University of the Witwatersrand
School of Education

Doctor of Philosophy (PhD)

Thesis

Fostering Creativity in Engineering Undergraduates

Candidate:
Teboho Pitso

Supervisor:
Professor Shirley Booth

Co-Supervisor:
Professor Ruksana Osman

2011
COPYRIGHT NOTICE

The copyright of this thesis rests in the University of the Witwatersrand, Johannesburg, South Africa, in accordance with the University’s Intellectual Property Policy.

No portion of the text may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, including analogue and digital media, without prior permission from the University.

Extracts or quotations from the thesis may, however, be made in terms of Section 12 and 13 of the South African Copyright Act No. 98 of 1978 (as amended), for non-commercial or educational purposes.

Full Acknowledgement must be made to the author and the University.

An electronic version of this thesis is available on the Library webpage (www.wits.ac.za\library) under “Research Resources”

For permission requests, please contact the University Legal Office or the University Research Office (www.wits.ac.za)
Fostering Creativity in Engineering Undergraduates

Teboho Pitso

A thesis submitted to the Wits School of Education in the Faculty of Humanities, University of the Witwatersrand in fulfillment of the requirements for the Degree of

Doctor of Philosophy in Education

Johannesburg, February 2011
DECLARATION

I declare that this thesis is my own unaided work. It is being submitted for the degree of Doctor of Philosophy in the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination in any other university, nor has it been prepared under the tutelage or with assistance of any other body or organization or person outside the University of the Witwatersrand, Johannesburg.

Teboho Pitso

15 February 2011.
ABSTRACT

Since their establishment in the 1960s, Universities of Technology in South Africa have been taking pride in providing career-focused qualifications that match the intermediate needs of the economy. In order to provide these career-focused qualifications, these institutions have been focusing on enacting a curriculum framework that emphasizes replication of industrial processes which tended to accentuate routinized, conventional problem-solving. The shift in economic paradigm in the 21st Century and the general dissatisfaction with graduate readiness in the workplace as evident in both local and international literature, framed as employability skills or generic skills, suggest a new impetus being placed on creativity, especially in engineering education. This study attempted to develop final-year undergraduates’ creativity through making visible the key features of a pedagogic practice, by analyzing the existing engineering undergraduate pedagogic practices, and reconceptualizing and testing a pedagogy that could potentially develop undergraduates’ creativity. The reconceptualized pedagogy, enacted as “learnshops”, accentuated teamwork, collaborative inquiry, guided creative problem-solving and the use of case studies to encourage students to seek the higher designs of water, paper and energy technologies within their institution. Design-Based Research (DBR) frames the methodology and methods of data collection and analysis.

The research results show that existing engineering undergraduate pedagogic practices remain trapped in the skills training discourse that emphasizes conventional problem-solving in curriculum enactment. Students' meanings of creativity remain generally eclectic prior and post involvement in the learnshops, although students’ creativity conceptions become more focused on imagination and resourcefulness post-learnshops. The Torrance Tests of Creative Thinking (TTCT) scores show that students’ creativity increased as a result of exposure to learnshops. Students working in teams of intermediate size to creatively solve given open-ended tasks related to sustainable development were able to achieve cooperation and generate useful ideas with the help of pedagogic interventions implemented during the learnshops. Itinerant membership as an aspect of team formation has little effect on teams’ generation of ideas.

Keywords: Creativity, curriculum, pedagogy, learnshops, teamwork, DBR
ACKNOWLEDGEMENT

The completion of the study of this magnitude is almost impossible without the generous contribution of a number of people. Without Professor Michael Cross, who believed in me against odds, this study could not have been completed at Wits – Thank you, Mike. I feel completely indebted to ONE engineering undergraduate lecturer from one University of Technology in South Africa who availed his time and energy to this study and, in turn, allowed invasion of his pedagogic practices which operate within highly restrictive curricular arrangements with strict timeframes for completion of academic work. I also convey my special gratitude to the engineering undergraduate lecturer who agreed to participate in the pilot phase. My special gratitude is reserved for the ninety engineering undergraduates who contributed to the study and grow within it although finally only 24 completed the project that took almost six months. Even more touching is the lasting legacy of the learnshops sessions that entrenched the kind of rapport between the researcher and the research participants that defies reduction to words.

Once in a while, out of the blue, comes a person who touches your life in extraordinary ways and leaves an indelible mark in the sand of your time. That person is Professor Shirley Booth who not only guided me through the rough terrains of research but raised my international profile by means of inviting me to serve in the Scholarship of Teaching and Learning (SoTL) Project. With refreshing insight and critical astuteness, Professor Shirley Booth refined the focus of the study in ways that sophisticated the study’s core argument. Ke a leboha, mme Shirley ka ho phatlalatsa dikgeo tshimong ya ka!

At times, in our long and arduous academic journeys, our ability to see far gets restricted by tunnel vision and needs another human being to rekindle our seeing anew. I have cause to express, with deep gratitude and appreciation, the significant role Professor Ruksana Osman played in refining my thesis. Ngiyabonga, ngiyangcongcoza nkosikazi Ruksana!

I further owe my sincere gratitude to my colleagues, Dr. Malefane Lebusa, Masebala Tjabane and Lesego Matee. Musa, Makgetsi and Tukele Ramatsebe deserve mention for rooting me on and believing in me. Bataung ba Tshola!
DEDICATION

This study is dedicated to the loving memory of my parents, Liphaphang and Disebo, my grandparents, George and Sesi Pitso; Molefi and Matshepula Ramatsebe, my brother George Makhunga and my mentors, Dr. Phakisa Mokhesi, Mokhethi Phatang and Motsitsi Khutsoane. It is further dedicated to the one who has been burning the midnight oil with me and steadying the home front ship, Matumelo, my siblings, Tumelo, Lefu, Lucky and Mamohlolo and Mankosi as well as my children, Molefi, Motsitsi, Tsebo and Sesi and their brother TsitsiTsitsi and his family. To my friend, Hlakanyane Moleli.

To my spiritual guide, father and mainstay: Ntate Thokoane Majola. To Michael Likhethe and family for the fatherly role. To Mokhethi Likhethi – Chief, you have been there in moments I needed you most. To my former principals: Mr. I. Makhale and Mr. N. Mokone and my teachers, Mrs. Masia, Mr. Madisa and Mr. Hadebe.

To the Makhunga clan

Umakhunga benkosi

Bezinzipho ezimnyama

ukuqhwayane!

Ndebele likaMthimkhulu, Bhungane

Umaukhula, uyepezulu

Uhlambe ilangalibalele

Emfuleni woTugela

Wenamfazi, umabele made

Umauminyisi umntwana

Uphosela amabele

Phezukomfula woTugela

Hlubi Umangelengele!
Table of Contents

Copyright Notice ii
Declaration iv
Abstract v
Acknowledgement vi
Dedication vii
End of the Line xii
List of Tables xiii
List of Figures xiv
List of Graphs xv

Chapter 1: Orientation into the Study

Introduction 1-7
Rationale and Background 7-14
Aims of the Study 14
Research Questions 15
Research Design and Methodology 16-17
Scope and Range of the Study 17
Overview of Chapters 17-19
Chapter 2: Review of Related Literature on Broad Creativity Conceptions

- **Introduction** 20-22
- **Cognitive Conceptions of Creativity** 22-33
- **Socio-Cognitive Creativity Conceptions** 34-46
- **Social Conceptions of Creativity** 47-64
- **Summary** 64-65

Chapter 3: Advancing Systematic Creativity through Education

- **Introduction** 66
- **Creativity Models as Aspects of Learning** 66-72
- **Exploring Learning Theories** 72-79
- **Creativity Models for Guided Creative Problem-solving** 79-82
- **Summary** 82

Chapter 4: The Development of the Creativity Model

- **Introduction** 83
- **Overview of TRIZ** 83-92
- **Summary** 92

Chapter 5: Research Design and Methodology

- **Introduction** 93-94
- **Design-Based Research (DBR) as Study’s Framework for Design** 94-96
Chapter 6: Understanding a Pedagogic Practice

Introduction

The Anatomy of a Pedagogic Practice

Summary

Chapter 7: Summary of Results

Introduction

The Engineering Undergraduate Pedagogic Practice

Students’ Understanding of Creativity Pre-Learnshops

Teachers’ Meanings of Creativity

Invitationally Reconceptualized and Tested Pedagogy

TTCT Results

Students’ Understandings of Creativity Post-learnshops
Chapter 8: Conclusions, Recommendations, Impact and Future Research

Introduction 169-171
Conclusions 171-176
Recommendations 177-178
Future Direction of Research 178-182
Summary 182

List of References 183-218

Appendices 218-236

Appendix A1: Interview Schedules 219

Appendix A2: Observational Protocol 228

Appendix B: TTCT 229

Appendix C: Letter of Permission 230

Appendix D: Letter of Consent 231
Six days a week, at the exact same time, the locomotive slices through the stillness of the landscape. Neither the trees nor the hills take note; only the cow watches the train go by. From his cab, the engineer waves a hand in greeting and the animal responds by swishing her tail back and forth, which also serves to fan her udders. They’ve been repeating this ritual for years, but the engineer knows that today is the last time. He’s retiring tomorrow. He’ll have time to tend the tiny patch of grass by the door of the house he’s finally paid off. He’ll be able to take vacations during low season, at discounted prices. He’ll no longer have to try to motivate himself every morning by repeating that work is a source of dignity, or to endure the presence of his assistant, a sullen, stingy man. The engineer pulls out of the station, his head filled with endless plans – most of which are actually feasible. He pays no attention to the winding tunnels leading to a series of rundown suburbs or the buildings lining the tracks, crowned with neon-lit advertising. He isn’t taking pleasure in his final moments, or thinking that he’ll never again be in charge of the locomotive’s throttle. His mind wandering through a nap filled future, he drives past the urban sprawl and towards a landscape where various shades of green and the intermittent smell of manure prevail. When he sees the cow in the distance, he instinctively reduces his speed, noting his assistant’s look of disapproval. As he nears the cow it occurs to him that simply waving is not enough. So he slows down, his eye on the speedometer’s needle until it comes to rest at zero. Slowly – trying not to jam his spine and set off his chronic back pain – he climbs down onto the tracks. With the faltering steps of a man unaccustomed to seeing his feet when he walks, he crosses the field toward the cow. The animal, having sensed the train halting, stops swishing her tail. She turns her head to get a better look at the engineer, who gingerly – as if rather than a cow she were a lion – reaches out a hand to pet the animal. The ruminant lets out a moo that scares off the swarm of flies normally clustered around her eyes. She glances at the train. Despite the distance she can make out the thin spiral of smoke trailing up from the sullen assistant’s cigarette. At the windows, passengers shout, demanding that the engineer get back immediately. They have no time to waste, they say. This is unacceptable. A more patient minority, however, looks on as a man who – judging by his uniform – must be an engineer hugs a cow for what seems quite some time and then, having finished, returns to the train with the satisfaction of one who has done his duty.
List of Tables

<table>
<thead>
<tr>
<th>Table Number</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Pedagogical Paradigms</td>
<td>62</td>
</tr>
<tr>
<td>5.1</td>
<td>Comparison of Traditional and DBR Methods</td>
<td>108</td>
</tr>
<tr>
<td>5.2</td>
<td>Outline of Learnshops and Data Sources</td>
<td>116</td>
</tr>
<tr>
<td>5.3</td>
<td>Categorization of Students’ Creativity Meanings</td>
<td>117</td>
</tr>
<tr>
<td>5.4</td>
<td>Categorization of Students’ Views on Creativity Value</td>
<td>118</td>
</tr>
<tr>
<td>5.5</td>
<td>Categorization of Students’ Views on Classroom Practice</td>
<td>119</td>
</tr>
<tr>
<td>7.1</td>
<td>Mean, Standard Deviation, t-test and p-test Results</td>
<td>164</td>
</tr>
<tr>
<td>7.2</td>
<td>Students Responses Distributional Patterns</td>
<td>165</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure Number</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Features of a Good Solution</td>
<td>85</td>
</tr>
<tr>
<td>3.2</td>
<td>The Creativity Model</td>
<td>90</td>
</tr>
<tr>
<td>5.1</td>
<td>McGrath Model of Group Tasks</td>
<td>108</td>
</tr>
<tr>
<td>6.1</td>
<td>Students' Positioning on Knowledge</td>
<td>128</td>
</tr>
<tr>
<td>8.1</td>
<td>The Educational Model</td>
<td>181</td>
</tr>
</tbody>
</table>