OPTIMISING THE DEVELOPMENT IMPACT OF MINERAL RESOURCES EXTRACTION IN ZIMBABWE

Philip Paul Jourdan

A research report submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Master of Science in Engineering.

Johannesburg, 2014
Declaration

I declare that this research report is my own, unaided work. It is being submitted for the degree of Master of Science at the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination at any other university.

..

(Signature of Candidate)

........................day of.............................. (Month).............................. (Year)
ABSTRACT

Zimbabwe has a rich and diverse minerals resource base that could be an important contributor to sustainable growth and development. The sector has rebounded dramatically from the hyperinflation economic crisis (2006-8) and with “dollarisation” (2009) the value of mineral production has increased six-fold to about $3 billion in 2011. However, if this increased mining activity is to ultimately result in more than just “holes-in-the-ground”, the crucial mineral linkages need to be realised whilst the resources are still extant.

In order to optimise the economic linkages the current “colonial” minerals governance regime (“free mining”) needs to be fundamentally overhauled to both encourage the discovery of new mineral deposits and to maximise the developmental impact of known mineral assets through public tender against developmental outcomes. In this regard a Mineral Cadastre Information Management System (MCIMS) needs to be established as soon as possible.

The current historically relatively high mineral prices (provoked by Asian demand) are likely to continue for the next couple of decades, so long as the major Asian economies (China and India) continue to display robust growth. Zimbabwe needs to take advantage of this widow of opportunity to use its finite mineral resources endowment to catalyse wider national economic growth and development through the maximisation of the seminal economic linkages. These are:

Fiscal linkages- mineral resource rents must be captured, through the introduction of a resource rent tax, and reinvested into building long-term physical and human (knowledge) infrastructure, to underpin future national competitiveness, and into minerals development (exploration and technology development) to prolong the life of the minerals sector.

Backward linkages – the minerals inputs sectors (capital goods, consumables, services) need to be grown, to take advantage of the expanding local demand, through measures to optimise the local content of mining purchases. The realisation of the backward linkages opportunities could seed wider industrialisation (capital goods) and economic transformation.

Forward linkages – minerals could provide critical feedstocks into other job-creating sectors provided that they are beneficiated into appropriate intermediate products such as iron/steel, polymers and base metals for manufacturing; nitrogenous and
phosphatic fertilisers for agriculture; cement, steel and copper for infrastructure and fossil fuels for power. However, mineral beneficiation often requires state facilitation through incentives and disincentives, such as a small export tax if the next value addition step is clearly viable. The use of PGM producer power, together with South Africa, should be explored to stimulate local value addition.

Knowledge linkages – the maximisation of the minerals HRD and R&D opportunities is essential for realising the back- and forward linkages. No resource-based state has industrialised without significant investment in human and technology development. Joint strategies with the private sector should be pursued (PPPs), including the reinvestment of resource rents into knowledge development.

Spatial linkages – high rent minerals are often able to finance major infrastructure (transport, power and water) which could underpin the development of other sectors such as agriculture, forestry and manufacturing, provided that the mineral leases provide for excess capacity and third party access at non-discriminatory prices. The huge Mwanesi iron ore resource could possibly underpin a low-cost logistics corridor to the coast which could substantially reduce national costs of trade (imports/exports).

All of the linkages would be greatly enhanced through access to larger markets and in this regard configurations for equitable regional integration should be investigated and pursued (e.g. SADC and SACU).

Zimbabwe’s minerals endowment could catalyse wider economic development if the minerals regime is overhauled and effectively administered to maximise all of the developmental opportunities associated with their extraction.

This study formed the basis for the *Draft Zimbabwe Minerals Development Policy* (Appendix 7: Draft Zimbabwe Minerals Development Policy, page 239) currently under finalisation (MMMD).
Wits MSC

CONTENTS

Abstract .. 4
Contents .. 6
Figures .. 9
Tables ... 11
Units ... 13
Abbreviations .. 14

1. Introduction ... 16
 1.1 Mineral Endowment .. 17
 1.1.1 Geology ... 17
 1.1.2 Mineral Resources of Zimbabwe .. 21
 1.1.3 Recent Mining History ... 23
 1.2 The Mining Sector .. 27
 1.2.1 Introduction ... 27
 1.2.2 Gold ... 33
 1.2.3 Platinum Group Metals (PGMs) ... 36
 1.2.4 Coal & CBM .. 38
 1.2.5 Asbestos ... 41
 1.2.6 Nickel ... 42
 1.2.7 Copper .. 43
 1.2.8 Chromite .. 45
 1.2.9 Iron and Steel ... 47
 1.2.10 Diamonds ... 49
 1.2.11 Other Minerals ... 51
 1.2.12 Future Prospects ... 54
 1.2.13 Minerals Marketing ... 59
 1.2.14 Labour .. 60
 1.2.15 Legislation .. 62

 2.1 Mineral Regimes to Enhance the Development Impact .. 64
 2.1.1 Suggested Future Mineral Rights Administration System 69
 2.1.2 Artisanal and Small-scale Mining (ASM) ... 72
 2.1.3 Transitioning arrangements ... 76
 2.1.4 MCIMS: Mineral Cadastre Information Management System 76
 2.1.5 Summary of Minerals Management Proposals .. 77
 2.2 The current crisis and the underlying commodities boom 78
 2.2.1 Phases of Global Steel Intensity of GDP ... 80
 2.2.2 A Resource-Based Strategy & the “Resource Curse” 83
 2.3 Zimbabwe: Towards a sustainable resource-based development strategy 85
 2.3.1 Resource linkages industrial clusters .. 87
 Phase I: .. 88
 Phase II: ... 88
4.7 Regional Integration .. 192
4.8 Conclusion ... 192

5. Future Research Agenda ... 194
5.1 On Minerals Governance ... 194
5.2 On Mineral Fiscal Issues ... 195
5.3 On Backward Linkages: ... 195
5.4 On Forward Linkages: ... 195
5.5 On Knowledge Linkages: ... 196
5.6 On Spatial Linkages: .. 196

6. References ... 198

7. Appendices ... 204
7.1 Appendix 1: History of Mining in Southern Africa ... 204
7.2 Appendix 2: Extract from STERP: Mining ... 213
7.3 Appendix 3: Mining & the Economy ... 217
7.4 Appendix 4: Changes in Mineral Fees (2011/2) & COMZ Recommended Fees 227
7.5 New Fees That Are Not Provided For In the Mines And Minerals Act 230
7.6 Appendix 5: Mineral Resource Rent Tax (RRT) Legislation .. 231
7.7 Appendix 6: Zimbabwe- Gold Production by Mine & Company 237
7.8 Appendix 7: Draft Zimbabwe Minerals Development Policy 239
FIGURES
Figure 1: Map of Zimbabwe ... 3
Figure 2: Geological Map of Zimbabwe .. 18
Figure 3: Mineral Deposits & Mines ... 27
Figure 4: Value of Mineral Production (1980-2011) 30
Figure 5: Mineral Exports (2000-2011) ... 32
Figure 6: Gold Production ... 34
Figure 7: The Great Dyke ... 37
Figure 8: PGM Production (1996-2011) ... 38
Figure 9: Coal Production (1980-2011) ... 39
Figure 10: Asbestos Production (1970-2011) 42
Figure 11: Nickel Production ... 43
Figure 12: Copper Production (1970-2003) ... 44
Figure 13: Chromite Ore Production (1980-2009) 45
Figure 14: Ferrochromium Production ... 46
Figure 15: Iron Ore Production (Bimco) ... 48
Figure 16: Diamond Production (Mct) ... 51
Figure 17: World Lithium Resources .. 52
Figure 18: Tin Production 1970-1994 (kt) .. 53
Figure 19: Fertiliser and Explosives Industry Shareholdings 53
Figure 20: Impact of Political Risk on Mineable Resources 56
Figure 21: Zimbabwe- Possible mineral rights licensing regime 67
Figure 22: Mineral Rights Administration .. 69
Figure 23: Suggested future Exploration and Mining Rights Granting System 71
Figure 24: Suggested future ASM Prospecting & Mining Rights Granting System ... 74
Figure 25: FDI inflows, global and by group of economies, 1995-2010 (billions USD) .. 78
Figure 26: Indices of primary commodity prices 79
Figure 27: Global Minerals Intensity of GDP(steel proxy) 80
Figure 28: Steel intensity per capita... 82
Figure 29: Steel Consumption Per Capita Versus Wealth 83
Figure 30: Establishing the Seminal Resource Linkages.................................. 86
Figure 31: Local resource and infrastructure markets................................. 87
Figure 32: Finland’s forestry cluster... 88
Figure 33: Schematic resource-based industrialisation phasing 91
Figure 34: Typical Mineral Project Economic Breakdown 102
Figure 35: Resource Rent Tax (RRT):... 108
Figure 36: Contribution to Fiscal Revenue: Regional Comparisons 124
Figure 37: RRT Example for an investment of $1,000mn 126
Figure 38: Conceptual Impact of Royalty on Exploitable Resources 127
Figure 39: Transfer Pricing - the export of profits.. 132
Figure 40: The Minerals FDI Trade-off.. 134
Figure 41: Impact of indigenisation risk on mineable reserves 135
Figure 42: Finland- Mineral Inputs & Outputs Sector 2007 138
Figure 43: South Africa- PGM Linkages... 141
Figure 44: Mining Pipeline Inputs: Capital goods and services 142
Figure 45: Global Materials Market... 147
Figure 46: Carbonatite and Guano (cave) Deposits of Zimbabwe 157
Figure 47: Platinum Exchange Traded Funds (EFTs).. 158
Figure 48: Possible Minerals Skills Fund (MSF) Structure............................... 169
Figure 49: Possible Minerals Technology Fund (MTF) Structure 170
Figure 50: Mwanezi Range Location .. 175
Figure 51: SDI Methodology .. 175
Figure 52: Putative Mwanesi Development Corridor 176
Figure 53: National gateway to the World?... 178
Figure 54: Mwanesi- Possible Tender Process ... 179
Figure 55: Mwanesi SDI: Possible Project Structure: 182
TABLES

Table 1: Zimbabwe’s Estimated Mineral Resources ... 22
Table 2: Mineral Production and Value (US$m) 2010/11 .. 31
Table 3: Mineral Production, Exports, Taxes & Employment 2011 ... 31
Table 4: Output Volumes: Selected Years .. 32
Table 5: World Coal Bed Methane (CBM) Resources ... 40
Table 6: Crude 40Mtpa heavy haul rail costs & tariffs ... 41
Table 7: Rough 80Mtpa heavy haul rail costs & tariffs ... 49
Table 8: Zimbabwe Diamond Production, Exports & unit value ... 50
Table 9: Future Mining Investment Requirements to Grow Production by 80% 55
Table 10: 2018 World Bank Base-case Projections (Current Infrastructure & Policies) 57
Table 11: 2018 World Bank Optimistic Projections (No Infrastructure or Policy Impediments) ... 58
Table 12: Additional Power for Potential Mining Expansion .. 59
Table 13: Changes to Royalties and License Fees .. 63
Table 14: Example of a mineral concession bid evaluation matrix .. 68
Table 15: Different criteria used in the definition of small-scale mining 73
Table 16: RRT in Africa .. 108
Table 17: Zimbabwe- Taxation .. 117
Table 18: Zimbabwe- Sector Taxation Comparisons .. 119
Table 19: Mineral Royalties- Regional Comparison .. 122
Table 20: Effective Tax Rate and Level of Profitability .. 123
Table 21: Withholding Taxes – Country Comparisons ... 131
Table 22: Finland: Mineral cluster size ratios ... 140
Table 23: The Principal Mineral-Based Feedstocks into the Economy - Strategic Minerals demand sectors .. 146
Table 24: Typical Costs for Steel Production, 2010 .. 149
Table 25: Zimbabwe- UNICEF Education Indicators ... 162
Wits MSC

Table 26: Zimbabwe Pupil Mathematics SACMEQ 2007 .. 163
Table 27: Higher Education (GER) and Technology (Technology Achievement Index)
.. 164
Table 28: Official Emigrants by country of destination, 2002–2005n 165
Table 29: Positive and Negative Effects of Migration from Zimbabwe 166
Table 30: An indicative Mwanesi Bid Matrix ... 181
UNITS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>Giga = billions</td>
</tr>
<tr>
<td>M</td>
<td>Mega = millions</td>
</tr>
<tr>
<td>k</td>
<td>Kilo = thousands</td>
</tr>
<tr>
<td>USD</td>
<td>US Dollars</td>
</tr>
<tr>
<td>GBP</td>
<td>Great Britain Pounds</td>
</tr>
<tr>
<td>$</td>
<td>US Dollars</td>
</tr>
<tr>
<td>USc</td>
<td>US cents</td>
</tr>
<tr>
<td>t</td>
<td>Metric tons</td>
</tr>
<tr>
<td>tpa</td>
<td>Tons per annum</td>
</tr>
<tr>
<td>ct</td>
<td>Carats</td>
</tr>
<tr>
<td>oz</td>
<td>Troy ounces</td>
</tr>
<tr>
<td>W</td>
<td>Watts</td>
</tr>
<tr>
<td>Ga</td>
<td>Billion years</td>
</tr>
<tr>
<td>y</td>
<td>Year/s</td>
</tr>
</tbody>
</table>
ABBREVIATIONS

AfDB African Development Bank
ALSF African Legal Support Facility (AfDB)
AMSA Arcelor-Mittal South Africa
AMV Africa Mining Vision
ANC African National Congress (SA)
ASM Artisanal & Small-scale Mining
AU African Union (AUC: African Union Commission)
BAFO Best and Final Offer
BEE Black Economic Empowerment (SA)
BIF Banded Ironstone Formation
BMR Base Metals Refinery
BSAC British South Africa Company
Capex Capital expenditure
CBM Coal Bed Methane
CCGT Combined Cycle Gas Turbine
CIT Corporate income tax
CMA Common Monetary Area (Rand Zone)
COMZ Chamber of Mines of Zimbabwe
CRC Cold rolled coil (steel)
CRIRSCO Committee for Mineral Reserves International Reporting Standards
CSR/I Corporate Social Responsibility/Investment
DFI Development Finance Institution
DMC District Mining Commissioner.
DRI Direct Reduced Iron
EOI Expression of interest
EPCM Engineering, Procurement, Construction Management
EPO Exclusive Prospecting Order
EPP Export Parity Price
ETFs Exchange traded funds
FIFA First-In-First-Assessed
Forex Foreign exchange
GML Government Metallurgical Laboratory
GPS Global Positioning System
GRP Government Roasting Plant
HCs Hydrocarbons (oil & gas)
Wits MSC

HEP Hydro-electric Power
HIPC Highly-Indebted Poor Countries
IPP Import Parity Price
IPP Independent Power Producer (context)
IOM International Organisation for Migration
ISLP International Senior Lawyers Project
MCIMS Mineral Cadastre Information Management System
MDA Mineral Development Agreement
MMA Mines and Minerals Act
MMCZ Minerals Marketing Corporation of Zimbabwe
MOODCAAA Moody's Corporate AAA Bond Index Rate
PGM Platinum Group Metals (Pt-platinum, Pd-palladium, Rh-rhodium, Ru-ruthenium, Ir-iridium, Os-osmium)
PMR precious metals refinery
PPP Private-Public-Partnership
RFP Request for Proposals
RMG Raw Materials Group
ROI Return on Investment
ROM Run-of-mine
RRT Resource Rent Tax
SA South Africa
SACMEQ Southern and East African Consortium for Monitoring Education Quality
SACU Southern African Customs Union
SADC Southern African Development Community
SAPP Southern African Power Pool
SDI Spatial Development Initiative (Development Corridor)
SMC Selous Metallurgical Complex
SOW Scope of Work
SWF Sovereign Wealth Fund
UNECA United Nations Economic Commission on Africa
USGS United States Geological Survey
VA Value addition
ZCTU Zimbabwe Congress of Trade Unions
ZGS Zimbabwe Geological Survey
ZMDC Zimbabwe Mining Development Corporation
1. INTRODUCTION

Problem Statement: Develop a “Zimbabwe Minerals Development Policy” that will configure the governance of the extraction of minerals to maximise the development impact through the maximisation of the minerals linkages in order to use finite national mineral assets for sustainable growth and inter-generational equity.

The objective of the study is to unpack the problem statement and shape a Minerals Development Policy using a methodology of exploring the optimisation of the mineral economic linkages to underpin long-term growth and development. Namely, the fiscal linkages (equitable revenue capture and reinvestment), the backward (upstream) linkages, the forward (downstream) linkages, the knowledge (side-stream) linkages and the spatial (side-stream minerals infrastructure) linkages.

This study first looks at Zimbabwe’s mineral endowment, geology and mining history, before reviewing the Minerals Sector by mineral. The next section looks at mineral policy in terms of maximising the developmental impact of mining through an appropriate minerals administration regime, including artisanal and small-scale mining and the establishment of a mineral cadastre information management system (MCIMS).

This is followed by an assessment of the current global crises and underlying commodities boom with a view to determining likely future demand for minerals and a discussion of a sustainable resource-based development strategy for Zimbabwe that maximises the seminal mineral sector linkages.

The main part of the study looks at each of the mineral linkage sectors/clusters (the fiscal, backward, forward knowledge and spatial), with recommendations on how they might be optimised. The section on spatial linkages includes a case study on the potential establishment of all the linkages in the development of the Mwanesi Range iron ore resource.

This is followed by a concluding discussion, recommendations and proposals for future research.
1.1 MINERAL ENDOWMENT

1.1.1 GEOLOGY

Zimbabwe predominantly consists of Achaean (Precambrian >600Ga) rocks, including:

- the Achaean granite/greenstones,
- the Achaean Limpopo mobile belt,
- the Paleoproterozoic Magondi Supergroup (Umkondo and Lomagundi Groups),
- the Neoproterozoic Makuti, Rushinga and Sijarira Groups.
The structural geology of Zimbabwe is dominated by the Zimbabwean Craton, cut by the Great Dyke and surrounded by rift valleys in the north and north-west (Zambezi Rift) and mobile belts in the north (Zambezi Belt), east (Mozambique Belt) and south (Limpopo Belt). See Figure 2. In fact the only geological border that does not coincide with a political border is in the south-west where the border with Botswana runs across the Zimbabwean Craton. The Craton is overlain in the north, north-west and east by Proterozoic and Phanerozoic sedimentary basins. This uncanny coincidence of political and geological divisions has sometimes been attributed to foreknowledge of the geology on the part of Cecil John Rhodes during the final delimitation of the region’s frontiers in the 1880’s and early 1890’s, but it is more likely that the BSAC had a vague idea of the distribution of the fabled Munhumutapa gold fields, from explorers such as Karl Mauch, and that the settlers, who in many ways determined the land which they wanted to expropriate, preferred the malaria free, more temperate highlands of the Craton.

The Craton was formed during the early Achaean (3.6 to 2.5 billion years ago) and consists of granites and gneisses which contain few economic minerals except for vein (pegmatite) deposits near contacts, but the Craton also contains the economically important schistbelts also known as the greenstone or gold belts which comprise a volcano-sedimentary sequence containing most of the mineral deposits currently exploited. These include, in order of current value of output, the vast majority of gold deposits, the nickel-copper-cobalt deposits (Trojan, Shangani and Epoch), the podiform chromite deposits (Shurugwi, Valley and Inyala), the iron ore deposits (Buchwa, Ripple Creek and Mwanezi), numerous limestone deposits (Sternblick, Cleveland, Zisco and Early Worm), the asbestos deposits (Shabanie, Gaths and King), the lithium pegmatite of Bikita, the Sandawana emeralds, pyrites (Iron Duke), the Barton Farm magnesite and numerous minor deposits of lead, zinc, antimony, tungsten, tin, barytes and corundum (Schlüter 2008).

The Limpopo Belt runs SSW-NNE in the south of the country, divides the Zimbabwean and Kaapvaal Cratons and consists of metamorphosed cratonic rocks containing gold deposits (Renco), corundum and magnesite occurrences. It has a complex polyphase history spanning the early Archaean (greater than 3.2 Ga) to the mid-Proterozoic.

The Proterozoic is represented by two major sedimentary basins, in the north-west (Deweras, Lomagundi and Piriwiri Groups) and on the eastern margins of the Craton (Umkondo Group). The former consists of metasediments and volcanics and are economically important for their copper deposits (Miriam, Norah, Shackleton and Angwa) and also contain important resources of copper-lead-zinc (Copper Queen and King), dolomite (Springbok), gold, tin (the Kamativi pegmatite), graphite (Lynx), kyanite, tantalum (tantalite pegmatites) and gemstones. The Umkondo Group on the eastern border is relatively unimportant economically, but has limestone and copper occurrences (Blenkinsop T. and Tromp P. 1995)

By far the most spectacular igneous body is the Great Dyke, also of Proterozoic age (2.5 Ga), stretching over 500 km NNE to SSW in the centre of the country. This layered intrusive contains enormous reserves of stratiform chromite all along its length (Lalapanzi, Mutoroshanga, Great Dyke and Vanad) and also contains large reserves of platinum, palladium, nickel, copper and gold in the four norite complexes of Musengezi, Hartley, Shurugwi and Wedza.

The other Proterozoic igneous event was the intrusion of the numerous Mashonaland dolerite sills and dykes about 1.9 Ga ago right across the craton, but with a concentration of sills in the northeast. These contain resources of nickel and copper (Madziwa) and are currently exploited for ornamental stone, the so-called "black granite" of Mutoko. The Proterozoic Mobile Belts flanking the Craton on its northern and eastern sides consist of metamorphic rocks in the Mozambique Belt (east) and the Zambezi Belt (north) with mineral occurrences of kyanite (Ky Mine) pegmatites with tungsten, tantalum, mica, beryllium and gemstones.

The Karoo System sediments and volcanics of the Phanerozoic were laid down in three main basins, the middle and lower Zambezi basins in the west and north and the Save-Limpopo basin in the south and south-east, and contain all of Zimbabwe's large coal resources, mainly in the sandstones and shales of the Ecca Series, and also has resources of fireclay, limestone, diaspore, and a significant uranium and vanadium sandstone deposit has recently been delineated at Kanyemba in the Zambezi Valley
(Blenkinsop T. and Tromp P. 1995). After the Karoo volcanics the post-Karoo Libombo, Limpopo and Botswana dolerite dyke swarms were emplaced, but contain no mineral occurrences.

The Mesozoic intrusive alkali carbonate ring complexes of Dorowa, Shawa and Chishanya, in the centre-east of the country, are important for their resources of phosphate rock (apatite) and vermiculite. The intrusive kimberlite pipes north of Bulawayo and near Beitbridge are pre-Karoo while those near the start of Lake Kariba are post-Triassic (Sebungwe), but none of these are particularly rich in diamonds. However the diamondiferous kimberlite pipes in the SW of the country (River Ranch and the Murowa pipes) are mined for diamonds.

The Mutandawhe granitic intrusion in the south-east is thought to be late Jurassic and contains a significant low grade molybdenum resource and tungsten deposits. During the late Jurassic to early Cretaceous, sandy sediments were deposited in various places and are of no economic importance, nor indeed are the Tertiary Kalahari aeolian sands covering the south-east of Zimbabwe, but a minor Tertiary-Quaternary diatomaceous earth deposit has been identified in the Zambezi Valley near Chirundu in the north-east. Both gold and diamonds occur in recent alluvial deposits (see Box below).
Box: The Zimbabwe Craton

“The Archean Zimbabwe craton is made of a number of distinct tectonostratigraphic terranes assembled by plate tectonic processes. The central Tokwe terrane consists of 3.5–2.95 Ga gneissic rocks and structurally complex inliers of possibly older greenstone belts. These are overlain unconformably by a 2.9–2.8 Ga assemblage of mafic and felsic volcanic rocks and conglomerates, and a separate 3.0–2.7 Ga southeastward thickening platform sequence of sandstone, shale, and limestone. 2.7 Ga greenstone belts form two distinctly different domains flanking the central terrane. Northwest of the ancient gneissic terrane, ca. 2.7 Ga greenstone belts comprise a series of calc-alkaline lavas and intercalated sedimentary rocks intruded by syn-volcanic plutons. Southeast of the ancient gneissic complex, 2.7 Ga greenstone belts consist of thick piles of tholeiitic basalts overlying ultramafic lavas, resting allochthonly over the shallow-water platform sequence and older gneissic terrane. This division of the Zimbabwe craton is interpreted to show that the central Tokwe terrane had a continental magmatic arc built on its northwestern edge, as its southeastern margin rifted from another fragment, forming the Sea of Umtali. A passive-margin sedimentary wedge formed on the rifted southeastern edge of this ancient continent, and prograded onto the craton during sedimentary and tectonic loading of the craton margin. The southeastern greenstone belts formed as thick oceanic crust (oceanic plateau) in this back-arc basin, and were later obducted on to the rift and passive margin sequence as the Sea of Umtali closed ca. 2.7 Ga. This was followed by intrusion of granitic plutons of the Chilimanzi suite ca. 2.6 Ga in a tectonic regime of intracontinental strike-slip faulting, representing a response to the Zimbabwe-Kaapvaal continent-continent collision. Crustal and lithospheric thickening during intrusion of these late granites may have played a role in stabilizing the Zimbabwe craton and forming the lithospheric root.”

1.1.2 MINERAL RESOURCES OF ZIMBABWE

Zimbabwe’s mineral resources are mainly found in the following geological formations and bodies:
The Greenstone Belts: Gold and silver, as well as considerable resources of iron ore, nickel, copper, cobalt and podiform chromite, also chrysotile asbestos (Mashaba Igneous Complex), limestone, pyrite and antimony;

The Great Dyke: PGMs\(^2\) & Au with associated copper, nickel and cobalt. Also, major chromium (chromite seams), as well as minor asbestos and magnesite;

The Magondi Supergroup: Copper & silver (Dewera Group);

The Karoo Basins: Considerable bituminous coal, coking coal, anthracite and CBM\(^3\) resources;

The Carbonatite Igneous Complexes: phosphate (Dorowa, Showa);

Kimberlite pipes: diamonds (Morowa, River Ranch);

Pegmatites: Lithium minerals, columbite-tantalite, cassiterite, et al;

Recent alluvial and placer deposits: Gold and diamonds (possibly from reworked Umkondo conglomerates).

Table 1: Zimbabwe’s Estimated Mineral Resources

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Estimated Resource (Tons)</th>
<th>Current Annual Extraction Rate (Tons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gold</td>
<td>13 million</td>
<td>20</td>
</tr>
<tr>
<td>Platinum</td>
<td>2.8 billion</td>
<td>2.4 million</td>
</tr>
<tr>
<td>Chromite</td>
<td>930 million</td>
<td>700 000</td>
</tr>
<tr>
<td>Nickel</td>
<td>4.5 million</td>
<td>9 000</td>
</tr>
<tr>
<td>Coal</td>
<td>26 billion</td>
<td>4.8 million</td>
</tr>
<tr>
<td>Diamonds ct</td>
<td>16.5 million ct</td>
<td>Infancy</td>
</tr>
<tr>
<td>Iron Ore</td>
<td>30 billion</td>
<td>300 000</td>
</tr>
<tr>
<td>Copper</td>
<td>5.2 million</td>
<td>None</td>
</tr>
<tr>
<td>Coal Bed Methane (CBM)</td>
<td>Largest known reserve in southern Africa</td>
<td>None</td>
</tr>
</tbody>
</table>

Source: Reserve Bank of Zimbabwe. Monetary Policy statement (February 2009)

Zimbabwe’s reported mineral resources are presented in Table 1. Almost all the known iron ore resources are in the massive low grade (40% Fe) Mwanesi Range resource. Worst (1962) estimates that resources, above the surrounding elevation (400 feet), at 33Gt. This would imply that there could be similar resources amenable to opencast

\(^2\) PGMs: Platinum Group Metals (Pt-platinum, Pd-palladium, Rh-rhodium, Ru-ruthenium, Ir-iridium, Os-osmium)

\(^3\) CBM: Coal Bed Methane
mining below the surrounding datum, giving a total possible resource in order of 70 billion tons. The diamond resource estimation in Table 1: Zimbabwe’s Estimated Mineral Resources (16.5M ct) appears to be a massive under estimation, given that 18M ct were produced in 2010/11! In 2012 David Matyanga put the national coal resource at 30Gt⁴.

Unlike the Witwatersrand stratiform gold reefs (SA) where future reserves can be determined with some precision, the Zimbabwean greenstone belt gold resources are notoriously difficult to extrapolate with accuracy, without extensive drilling and assaying. Consequently the gold actual resources could be much higher than reported.

1.1.3 RECENT MINING HISTORY⁵

"The most important single element determining the nature of economic and political development in Southern Rhodesia was the British South African Company’s overestimation at the end of the nineteenth century of its mineral resources, and the persistence of this overestimation for roughly fifteen years."⁶

The enormous costs that were incurred by the BSAC in bringing the railway to Bulawayo and in colonising the country were not repaid by the expected mineral profits. This led the company to encourage the formation of a white rural bourgeoisie to develop the agricultural potential and thereby raise the value of the company’s assets, particularly the land.

In the early days the BSAC demanded a 50% free equity in any mining company set up to exploit the minerals. Rhodes’ settler column travelled up to the Shona-speaking area in the north-east in 1890, carefully avoiding the Ndebele controlled part of the country in the south-west. After disappointing mineral discoveries in the Shona area, the colonialists invaded the Ndebele area in 1893 in the hope of discovering gold deposits there, but the much vaunted mineral riches of Zimbabwe continued to elude them.

⁴ www.fossilfuel.co.za/David%20Matyanga.pdf
⁵ A more comprehensive “History of Mining on Southern Africa” is presented in Appendix 8.1
In 1896 the settlers were nearly wiped out when the Shona and Ndebele rose up together in rebellion at being dispossessed of their land. The first "chimurenga" (liberation war) was finally put down in 1897.

When the BSAC charter expired in 1923 there was a settler referendum to decide on whether or not to incorporate with the Union of South Africa which had been formed in 1910. The result was a clear rejection and in that year the country was renamed Southern Rhodesia and it became a British Crown Colony with "Responsible Government" (settler voters only).

From then on the country was effectively ruled by the settlers and in 1953, in an attempt to create an economic block to counter the Union of South Africa, the settler supported Central African Federation (CAF) of the two Rhodesias and Nyasaland was created. This gave the Southern Rhodesian settlers access to the enormous copper mining revenues from Northern Rhodesia, plentiful labour from Nyasaland and the markets of both.

The nationalist movements in Northern Rhodesia and Nyasaland were clearly opposed to the Federation which they rightly saw as being settler dominated (the federal legislature had twenty-nine settler seats and six black seats) and were able to bring about its dissolution in 1963. Soon after, they both achieved independence as Zambia and Malawi.

The main nationalist movements, ZANU and ZAPU, were banned in the early sixties and in 1965 the settler regime declared unilateral independence (UDI) from Britain and changed the name of the country to Rhodesia. The United Nations responded with economic sanctions against Rhodesia which were not particularly effective as they were never applied by its southern ally, apartheid South Africa.

The nationalists in exile launched a guerrilla war in 1966 which escalated rapidly with the defeat of the Portuguese in neighbouring Mozambique in 1974. By 1979 most of the country was under martial law and late that year the settlers capitulated at the Lancaster House Conference to majority rule. Independence was gained in 1980 under the Shona-based ZANU party and in 1988 it merged with the Ndebele-based ZAPU party.

As effective economic independence was gained from Britain as early as 1923, the country was able to proceed with a more balanced economic development in the thirties and forties than other African colonies, ruled from Britain. During this period a
substantial metallurgical and engineering capacity was installed which was further strengthened during Federation. It was this basic capacity that, with UDI and sanctions, enabled a wide ranging import substitution development program in the sixties and seventies.

In 1987 Zimbabwe had the fourth highest GNP per capita of all sub-Saharan African countries with populations greater than two million (after South Africa, Cameroon and Ivory Coast) and in 1986 it had the highest manufacturing value-added per capita in the whole of independent Black Africa. Due to the global recession, particularly the fall in primary commodity prices, Zimbabwe's GDP hardly grew in real terms in the 1980's and GDP per capita actually shrunk over this period.

During UDI/sanctions the Rhodesian economy became closely linked to that of its much larger ally, apartheid South Africa, via a series of trade and transport agreements. The main export market for Zimbabwe's expanding manufacturing sector was South Africa. In the 80s the government attempted to reduce this dependency and from 1981 to 1987, South Africa's proportion of total trade fell substantially, from 24% to 13%. This delinking with South Africa did not lead to an increase in trade with fellow members of the SADC, which stayed constant, but rather a shift to the developed countries.

Before Mozambique applied sanctions against Rhodesia in 1976, the bulk of the country's foreign trade went via the ports of Beira and Maputo, but after 1976 almost all trade went via South Africa. After independence Zimbabwe attempted to shift its trade routes away from South Africa back to Beira and Maputo and to this end Zimbabwe maintained a large contingent of troops in Mozambique in the 80s to guard the Beira and Limpopo corridors from attacks by the South African sponsored MNR (Renamo) as the maintenance of alternative export routes was seen by government as being strategically essential. This threat disappeared with the liberation of South Africa in 1994 and the normalisation of relations between the two countries. By 2000 trade between the two constituted their largest trading volumes in the southern African (SADC) region.

Inflation started taking off in the late 90s due to massive government fiscal deficits caused by large pay-outs to war veterans and the war in the DRC. The land reclamations from 2000 further reduced revenues and also limited access to foreign
loans (financial sanctions7) resulting in the acceleration of inflation and the final implosion of the Zimbabwe dollar in 2008 and dollarisation in early 2009. The contribution of the main sectors to GDP was unchanged from independence to 2000. Manufacturing was the largest of the productive sectors followed by agriculture and mining, though it should be noted that the smelting and refining of certain metals (ferrochrome, iron and steel) is classed as manufacturing rather than mining. However, hyperinflation and the contraction of manufacturing and agriculture have resulted in the mining becoming the lead productive sector since dollarisation (2009) following the signing of the Global Political Agreement (GPA) in September 2008 creating the “Inclusive Government”.

1.2 THE MINING SECTOR

Figure 3: Mineral Deposits & Mines

Zimbabwe’s mineral deposits and mines are concentrated on the centre of the country along the Great Dyke and Greenstone Belts (Figure 3).

1.2.1 INTRODUCTION

In 1992 Ericsson and Gibbon observed that the “Zimbabwean mining is much diversified in terms of minerals produced, the number of operating mines and dispersal of control over the mine production. More than 40 minerals are mined; the number of operating mines is 800-900; the most important mining company, Anglo American, controls 25 per cent of the value of total mining output and state ownership is not dominant. This situation contrasts sharply with the situation in most African countries. Most mining countries in Africa depend on one single or possibly two or three minerals, there are usually only a few large-scale mines and only a handful, usually transnational, mining companies dominate the industry or there is a large state ownership.

The main factors, which have led to this situation are:

- general economic and political developments.
- a favourable geology. The political boundaries of Zimbabwe coincide almost completely with the geological boundaries of the Zimbabwe Craton and is intersected by the Great Dyke. Both are geological phenomena with large reserves of several economically interesting minerals.
- liberal and clearly defined mining legislation, which has been in force since long before independence. A licence to explore, the right to peg a claim and to mine a deposit are given to basically anybody with only limited exemptions. This is in contrast to most African countries where exploration and mining is only allowed with special permits.

The period of settler government with the sanctions that were imposed by the UN in the seventies produced a mining industry that developed in an essentially different way to that of other colonies. Zimbabwe was not developed purely in the interests of the colonising country, as a source for raw materials and a market for manufactured goods, but was developed in the interests of a "national" bourgeoisie, albeit a minority settler one. The settlers had effective control of government from 1923 which resulted in a type of development more akin to that of South Africa than, say, Zambia or Zaire.

The imposition of sanctions also had a profound effect on the mode of development by way of forcing national self-sufficiency in a large variety of products. These factors resulted in several strategies regarding the mining industry both in terms of upstream and downstream development. The shortage of foreign exchange, sanctions and the land-locked position of the country provoked a downstream development of the mining industry in the sixties and seventies in order to increase value and decrease weight/volume. Most of the major metals currently produced are reduced to their pure form, except for the precious metals (PGMs and gold). Examples are copper cathodes, nickel cathodes, ferrochrome, pure tin, iron and steel.

Processing and refining of minerals was also necessary for import substitution for the metal inputs to industry as a whole (eg. copper for wire and cables). Also, several minerals are mined purely as inputs for local industry (generally on a small scale) such as pyrites (for sulphur), apatite (for phosphates) and clay (for ceramics and refractories), but also on a large scale such as limestone (for cement and lime) and coal (for energy, metallurgy and agriculture).

On the upstream side, a wide variety of inputs to the mining industry are manufactured locally. Mining equipment such as ball mills, conveyors, rail and rolling stock, pumps, headgear, ventilation ducting and electrical equipment are (or were) made in the country and a variety of mining chemicals and explosives are also locally manufactured.

Another effect of sanctions was that during UDI the TNC’s had difficulty in repatriating their profits which meant that surplus generated by the mining industry was often reinvested in the industry or other parts of the economy. This also had the effect of increasing the overall control of the TNC’s over the economy as a whole. The major transnational mining houses had significant holdings in other sectors of the economy. For instance, Anglo American Corporation had interests in manufacturing, farming, services and finance, Lonrho also had holdings in vehicle manufacture, forestry and textiles, while RTZ plc had a local engineering subsidiary manufacturing agricultural equipment (Tinto Industries).

The original capital generally came from abroad but later investment was mainly raised locally, except for RTZ’s 1980 investment of 6 MGBP\(^{10}\) in Renco gold mine and the new PGM investments (last 20 years). Until 1995 the mining industry was largely in the hands of the transnational mining companies, the most important being Anglo American Corporation of South Africa (nickel, ferrochrome, phosphates and pyrite), Union Carbide (ferrochrome and gold), RTZ Plc (gold, nickel), Lonrho (gold) and Turner Newall (asbestos). However, since 1995 most of these have divested, except for Anglo’s return through its subsidiary, Anglo Platinum in 2003.

Since independence state participation has been on the increase. The state has the largest shareholding in coal mining, the iron and steel industry (Bimco/Zisco),

\(^{10}\) MGBP: millions of Great Britain Pounds
diamonds (Marange) and, in the past, copper and tin. In 1984 the newly formed state enterprise, the Zimbabwe Mining Development Corporation (ZMDC) bought out the ailing local mining interests of Messina of South Africa giving it control over most of the national copper and silver production, but these mines were near the end of their life and finally closed in 2004. ZMDC recently became the partner in the Marange diamond operations with four other JV foreign investors. The state also handles all mineral and metal trade (MMCZ) with the exception of gold which is marketed through Authorised Dealers (the Reserve Bank of Zimbabwe used to be the sole Authorised Dealer) and PGMs under Special Mining Leases (SPLs).

Note: Due to hyper-inflation figures for 2007/8 are estimates.

Source: Central Statistical Office, Harare and the Chamber of Mines of Zimbabwe

Figure 4: Value of Mineral Production (1980-2011)

Due to depressed real prices for most minerals in the 80s, there was little expansion in mineral production. In USD terms the total value of mineral production fell by 13% from 1980 to 1989 ($527M), excluding the value of ferrochrome, pig iron, steel, cement, ceramics and coke (Table 2). It then increased to $529M in 1998 and $776M in 2004 before collapsing during the hyper-inflation crisis (Table 2). Due to robust prices (Asian demand) it has recovered dramatically since dollarisation (Figure 4) and is now at an all-time high of about $3 billion (2011). Most mines are located around the central N-S axis due to the Great Dyke and Greenstone Belts, as displayed in Figure 3: Mineral Deposits & Mines.
Table 2: Mineral Production and Value (US$m) 2010/11

<table>
<thead>
<tr>
<th>Mineral / Metal</th>
<th>2010</th>
<th>Value $</th>
<th>2011</th>
<th>Value $</th>
<th>% Chg Vol</th>
<th>% Chg $</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gold t</td>
<td>9.62</td>
<td>$380</td>
<td>20.8</td>
<td>$711</td>
<td>116%</td>
<td>87%</td>
</tr>
<tr>
<td>PGM t</td>
<td>15.56</td>
<td>$510</td>
<td>20.84</td>
<td>$921</td>
<td>34%</td>
<td>81%</td>
</tr>
<tr>
<td>Diamonds - Kimberlite k ct</td>
<td>178</td>
<td>$28</td>
<td>367</td>
<td>$64</td>
<td>106%</td>
<td>129%</td>
</tr>
<tr>
<td>Diamond – Alluvial M ct</td>
<td>8</td>
<td>$320</td>
<td>9</td>
<td>$450</td>
<td>13%</td>
<td>41%</td>
</tr>
<tr>
<td>Chromite kt</td>
<td>517</td>
<td>$115</td>
<td>609</td>
<td>$136</td>
<td>18%</td>
<td>18%</td>
</tr>
<tr>
<td>Ferrochrome kt</td>
<td>154</td>
<td>$135</td>
<td>161</td>
<td>$303</td>
<td>5%</td>
<td>124%</td>
</tr>
<tr>
<td>Coal Mt</td>
<td>2.4</td>
<td>$100</td>
<td>4.6</td>
<td>$274</td>
<td>92%</td>
<td>174%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>-</td>
<td>$1 588</td>
<td>$2 859</td>
<td></td>
<td>80%</td>
<td></td>
</tr>
</tbody>
</table>

Source: Gary McMahon 2012 (from Government of Zimbabwe, COMZ)

PGM mining has become the largest sector (by value) followed by gold and diamonds (Table 3). Both nickel and asbestos production have collapsed though the former is expected to revive over the next few years. Asbestos may also revive if markets and capital can be secured.

Table 3: Mineral Production, Exports, Taxes & Employment 2011

<table>
<thead>
<tr>
<th>Mineral / Metal</th>
<th>Production (000)</th>
<th>Gross Revenues ($m)</th>
<th>% of Total Gross Revenues</th>
<th>Exports (S$m)</th>
<th>Fiscal Revenues ($m)</th>
<th>% of Total Fiscal Revenues</th>
<th>Employment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gold oz</td>
<td>418</td>
<td>711</td>
<td>24</td>
<td>711</td>
<td>125</td>
<td>32</td>
<td>8600</td>
</tr>
<tr>
<td>PGM oz</td>
<td>670</td>
<td>921</td>
<td>31</td>
<td>921</td>
<td>64</td>
<td>16</td>
<td>8115</td>
</tr>
<tr>
<td>Diamonds, kimberlite, ct</td>
<td>367</td>
<td>64</td>
<td>2</td>
<td>64</td>
<td>10</td>
<td>2</td>
<td>330</td>
</tr>
<tr>
<td>Diamonds, alluvial ct</td>
<td>9,000</td>
<td>450*</td>
<td>15</td>
<td>450*</td>
<td>118**</td>
<td>30</td>
<td>1000</td>
</tr>
<tr>
<td>Coal t</td>
<td>4,564</td>
<td>274</td>
<td>9</td>
<td>27</td>
<td>43</td>
<td>11</td>
<td>3400</td>
</tr>
<tr>
<td>Chromite t</td>
<td>609</td>
<td>136</td>
<td>5</td>
<td>136</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ferrochrome t</td>
<td>161</td>
<td>403</td>
<td>14</td>
<td>403</td>
<td>28</td>
<td>7</td>
<td>2865***</td>
</tr>
<tr>
<td>Total</td>
<td>2959</td>
<td>100</td>
<td>2712</td>
<td>390</td>
<td>100</td>
<td>24,310</td>
<td></td>
</tr>
</tbody>
</table>

*Due to KPC delays production is often exported in subsequent years; ** includes $36m assumed from ZMDC’s profits; *** including chromite mining. Source: McMahon 2012, Table 3.

In 2011 gold and diamonds (assuming transfers to the fiscus by ZMDC) were the largest contributors to fiscal revenues, followed by PGMs (Table 3: Mineral Production, Exports, Taxes & Employment 2011). The low PGM contribution, given that it has the largest revenues, is probably due to the fact that two of the three operators are under Special Mining Leases (SPLs) with a different fiscal regime (lower CIT and royalties,
but with an Additional Profits Tax – APT) which appears to have resulted in a lower relative tax take.

Table 4: Output Volumes: Selected Years

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gold t</td>
<td>11.4</td>
<td>16.9</td>
<td>22.1</td>
<td>15.5</td>
<td>21.3</td>
<td>11.4</td>
<td>7.0</td>
<td>3.6</td>
<td>5</td>
<td>9.6</td>
<td>20.8</td>
</tr>
<tr>
<td>Asbestos kt</td>
<td>251</td>
<td>161</td>
<td>145</td>
<td>168</td>
<td>104</td>
<td>97</td>
<td>85</td>
<td>12</td>
<td>5</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Nickel</td>
<td>15.1</td>
<td>11.4</td>
<td>6.0</td>
<td>8.0</td>
<td>9.8</td>
<td>8.8</td>
<td>8.6</td>
<td>6.0</td>
<td>4.9</td>
<td>6.1</td>
<td>-</td>
</tr>
<tr>
<td>Chromite kt</td>
<td>552</td>
<td>573</td>
<td>669</td>
<td>749</td>
<td>668</td>
<td>700</td>
<td>614</td>
<td>312</td>
<td>194</td>
<td>517</td>
<td>609</td>
</tr>
<tr>
<td>FeCr kt</td>
<td>n.a</td>
<td>n.a.</td>
<td>250</td>
<td>258</td>
<td>193</td>
<td>202</td>
<td>190</td>
<td>148</td>
<td>73</td>
<td>154</td>
<td>161</td>
</tr>
<tr>
<td>Coal kt</td>
<td>2589</td>
<td>4978</td>
<td>3808</td>
<td>3721</td>
<td>3323</td>
<td>2107</td>
<td>2080</td>
<td>1510</td>
<td>1667</td>
<td>2670</td>
<td>4564</td>
</tr>
<tr>
<td>PGMs t</td>
<td>-</td>
<td>-</td>
<td>0.90</td>
<td>4.46</td>
<td>8.38</td>
<td>9.29</td>
<td>9.97</td>
<td>10.70</td>
<td>13.18</td>
<td>16.84</td>
<td>20.84</td>
</tr>
<tr>
<td>Iron ore Mt</td>
<td>0.80</td>
<td>1.26</td>
<td>0.98</td>
<td>0.27</td>
<td>0.37</td>
<td>0.29</td>
<td>0.33</td>
<td>0.09</td>
<td>0.09</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Source: Chamber of Mines of Zimbabwe

Since 2000 the two growth minerals have been diamonds and PGMs, whilst the production of all other minerals have declined, almost to zero for copper, asbestos, iron ore and nickel, though gold has recovered and nickel is likely to rebound (Table 4). Iron ore could either return to previous levels (~1.5Mtpa) for the local market (Zisco) or dramatically increase as an export mineral, depending on the current negotiations with Essar. The prognosis for asbestos is unclear due to market constraints.

Figure 5: Mineral Exports (2000-2011)

Given that virtually all metal and diamond production is exported, mineral exports have by and large tracked production, except for diamonds where, due to the KPC process, a stockpile has been built up, which will be put onto the market over the next few years. In USD terms, mineral exports have increased more than four-fold over the last decade (Figure 5).
Appendix 3: Mining & the Economy Compiled by Isaac Kwesu11, gives a more detailed discussion of the role of the minerals sector in the Zimbabwean economy, including the composition of the mining sector’s revenue (costs), its contribution to GDP, to exports, to forex earnings, to fiscal revenues, to employment and to investments, as well as mining CSR12 (CSI13) activities.

1.2.2 GOLD

In the 1,200 years preceding European colonisation, it is estimated that about 4000 ancient mines produced between 600 and 800 tonnes of gold "...with a normal production during their heyday of about 20,000 oz. a year"14 and "the gold trade was directly responsible for the rise of the Zimbabwe state"15.

Gold output peaked in 1916 at 29 tons and in the first one hundred years (1890-1989) of modern mining 1.54kt were produced. In 1979 gold replaced asbestos as Zimbabwe’s most valuable mineral produced and it competed with ferrochromium as the premier mineral export until 2007 when platinum took over the lead. The 1916 record was nearly surpassed in 1999 when 27 tons were produced, but thereafter there was a steady decline due to the economic meltdown to 3.6t in 2008. Since dollarisation, production has rapidly recovered, to 13t in 2011 (Figure 6).

\begin{footnotesize}
\begin{itemize}
 \item 11 COMZ 2012
 \item 12 CSR: Corporate Social Responsibility
 \item 13 CSI: Corporate Social Investment
 \item 14 Summers, 1969, p218
 \item 15 Huffman 1974, p241
\end{itemize}
\end{footnotesize}
Gold is still produced by numerous small mines, but the bulk of production comes from a few medium-sized mines. The state used to give comprehensive aid to the numerous small-scale gold mines by providing expertise, assaying, loans, hire of equipment, and by guaranteeing a fixed gold price (by the Reserve Bank). In addition the state roasting plant in Kwe Kwe used to custom treat refractory ores. In 1988 the state gold refinery was opened in Msasa with a capacity of 90 tpa, well above the foreseeable national needs, to cater for refining from other states in the region. However, it was shut in 2009 when gold miners were authorised to market their own production (under the Gold Trade Act).

One of the few post-Independence investors was Cluff Minerals of the UK who started out with a dump retreatment operation at the Royal Family mine (His Majesty) in the south-east near Filabuzi. In 1988 Cluff invested a further $5M for the development of the large Freda-Rebecca (Dandadzi) operation near Bindura. By 1989 this was the largest producer in the country, with an output of 1.9 tonnes of gold from about 1Mt of ore and Zimbabwe was the main source of revenue for Cluff plc of the UK. It is now owned by Mwana Africa Holdings (Mwana Africa Plc and China International Mining Group) and in 2011 produced 1.3t of gold (largest producer). This was the first Zimbabwean operation treating large tonnages of low grade ore by heap leach. This type of opencast heap leach operation was the main source of new gold in Western Australia’s spectacular ten-fold expansion during the eighties and it would appear that Zimbabwe could have substantial potential for many more of these operations.

Lonrho Plc of the UK used to be the largest gold producer in Zimbabwe from eight mines (4.5 to 5tpa). Five of its mines were owned via its subsidiary in Zimbabwe, Independence Mining (Pvt) Ltd. (Athens, How, Shamva, Tiger Reef and Redwing/Old
West mines). It also owned another three gold mines via its holding company Willoughby’s of the UK which in turn owned Corsyn Consolidated Mines Limited in Zimbabwe (Arcturus, Mazowe and Muriel mines). Lonrho Zimbabwe (Pvt) Ltd. (Lonzim) was the local holding company and Homestake Mining and Technical Services (Pvt) Ltd. provided financial and technical services to all of the mines. In 1999 Lonrho relisted its mining assets under Lonmin Plc and in 2002 Metallon Gold (Metallon Corporation Plc, owned by Mzi Khumalo of SA) bought five of Lonrho’s mines - Red Wing, Shamva, Arcturus, How Mine and Mazowe - for $15.5 million. It also purchased the Motopa prospect from Oleaster Investments in 2003. The mines were all closed in 2008 during the hyper-inflation and fixed gold price (below market price) crisis but have been reopened since dollarisation and the scrapping of the fixed gold price. Metallon reports resources of 8.7M oz grading 2.9g/t from all of its properties and a capacity to produce about 4tpa of gold.¹⁶

Other larger gold producers include Blanket Mine (~1.1tpa, Caledonia), Renco Mine (~0.6tpa) and Turk Mine (~0.5tpa, New Dawn). In addition about 1.5tpa of by-product gold is produced by the PGM miners. The state mining holding company, the Zimbabwe Mining Development Corporation (ZMDC), owns the Jena, Sabi, and Elvington mines and the dormant Bar-20 mine.

A comprehensive list of gold mines, their status, controlling company, and production from 1975 (5-yearly) and EBIT is given in Appendix 6: Zimbabwe- Gold Production by Mine & Company.

All gold bullion used to be bought by the Reserve Bank and refined by the state refinery, Fidelity Printers and Refiners, built with assistance from the Perth Refinery in Australia, but the plant has been on care and maintenance since the hyper-refinery crisis. The outstanding Reserve Bank debt to the gold miners is apparently the main obstacle to its reactivation. During the meltdown years (high and hyperinflation) gold miners were forced to sell to the Reserve Bank at the “official” exchange rate, which was well below the purchasing power rate, causing many mines to close and a collapse in national output.

¹⁶ Metallon Corp. 2012 (www.rair-dev.co.za/metallon/default.php)
The principal constraints to gold mining expansion taking advantage of the current high prices are access to capital (many are small operations), reliable power supply, economies-of-scale (consolidation of smaller producers) and availability of skills. In addition, the past ASM\(^{17}\) support structures (instruments) need to be rebuilt (finance, technical and marketing). A recent minerals scenarios study estimated that by 2018 production could reach 28.5t, under the current investment regime, or an astounding 82.4t “with more investment stability”\(^{18}\). The lower scenario would require investments of $450 million and the higher $2.5 billion! Employment in 2018 is projected at 15,200 for the former and 27,600 for the latter. However, there would appear to be major resource constraints to achieve the higher scenario in six years, given that major exploration and reserves delineation would have to be undertaken which would push out the time horizon, if in fact the requisite resources exist.

1.2.3 PLATINUM GROUP METALS (PGMS)

The Great Dyke of Zimbabwe contains the second largest known deposits of platinum in the world. The Great Dyke resources are estimated at 1.68 Gt (billion tons) grading 5.54 g/ton (grams per ton) PGM’s (86%) and Au (14%) with 0.2% Ni and 0.15% Cu. There are currently three operating mines operating namely, Zimplats (Implats), Mimosa (Aquarius & Implats) and Unki Platinum (Anglo Platinum), Figure 7. Current platinum production is at 188 000 ounces per year. Five other platinum projects are at different stages of resource identification (e.g. ZMDC’s Bokai and Ngezi-Mhondoro). Besides gold, the platinum industry appears to have the greatest immediate prospect for rapid expansion.

\(^{17}\) ASM: Artisanal & Small-scale Mining
\(^{18}\) McMahon 2012, p5
The development of Platinum Group Metal (PGMs) mining dates back to 1969 when Union Carbide undertook trial mining at Wedza, which was not viable at the prevailing PGM and Ni/Cu prices. In the 80s RTZim ran the pilot Zinca mine on the Hartley Complex which also proved to be non-viable. In 1994 the Mimosa Mine started producing on a small scale and this was followed by the $500 million BHP/Utah - Delta Gold joint venture investment for the development of the Hartley Platinum mine which closed in 1999 and was taken over by Implats (Delta), who concentrated on the Ngezi opencast resource, and in 2002/3 it was bought by Impala Platinum of SA (Figure 8: PGM Production (1996-2011)). The BHP-Delta base metals refinery\(^{19}\) (BMR) was put on care and maintenance in 1999, though current production volumes would appear to be sufficient for its reactivation.

\(^{19}\) SMC: Selous Metallurgical Complex
The sector has huge potential especially for further expansion and greater value addition (all production is exported as concentrate or matte/leach alloy for refining in SA). In 2011 PGM (Pt, Pd, Rh) production was 629,000 oz (ex Au)20, which is above the rough threshold of 500,000 oz/an for a basic (Pt, Pd, Rh & Au) PGM PMR21. A scenario study by the World Bank forecasts that by 2018, output could increase to 29tpa and employment to over 10,000, at a cost of $1.8 billion in investments.22 Such volumes would appear to be sufficient for a full PMR (Pt, Pd, Rh, Ru, Os, Ir and Au).

Small amounts of PGM concentrates are also contained in the residue of nickel-copper refining (BNR), when operational.

1.2.4 COAL & CBM

Coal production over the 20 years 1965 to 1985 remained fairly static between 3.0 and 3.5 Mt, however, production was substantially expanded in 1986 with the commissioning of an opencast operation to supply the new Hwange Power Station, at about 5 Mt annually (Figure 9).

20 McMahon 2012
21 PMR: precious metals refinery
22 McMahon 2012
Hwange Colliery Company Ltd. is a quoted company and is 40% owned by the state and 32% by the van Hoogstraten family (UK)23. Nearly all coal production is for the local market – power (Hwange), the cement industry, agriculture and in the past, for coke production for Zisco and exports (Zimbabwe used to also export about 100 ktpa of coke, mainly to Zambia and DRC).

By-products from coke production are tar and benzole. A new distillation plant was constructed in Kwekwe in the 90s by Zimchem which takes all tar and benzole from both the Hwange and Zisco coking plants (when operational), for the production of a variety of chemical products.

Coal-to-Liquids (CTL) projects have been considered on and off since the 1950’s and are once again under investigation, as are possibilities for gasification of Zimbabwe’s substantial coal reserves and the tapping of the CBM reserves for production of ammonia for fertilisers, as well as power (CCGT).

RioZim owns the Sengwa coal deposit (>1.3Gt reserves) and have plans to build a 2GW power station based on this resource within the next 5 to 10 year period24.

The major coal resource areas are: 1) the Mid-Zambezi basin: Hwange (1900 Mtonnes), Gwai River Valley (3675 Mtonnes), Binga (3604 Mtonnes), Gokwe (1150

23 RMG 2012.
24 RioZim 2012 (www.riozim.co.zw)
Mtonnes) and 2) the Sabi-Limpopo basin: Sabi-Lundi (379 ktonnes), Bubye (291 ktonnes) and Tuli (127 ktonnes)\(^{25}\).

In addition, the Coal-bed Methane (CBM) resources in the Hwange/Lupane basins are estimated at over 27-40 TCF (trillion cubic feet) of sulphur-free methane gas, which rank Zimbabwe’s resources at 11th globally, after SA (Table 5: World Coal Bed Methane (CBM) Resources, but other coal basins are also known to have substantial CBM resources (e.g. the Sengwa Basin) which still need to be delineated.

Table 5: World Coal Bed Methane (CBM) Resources

<table>
<thead>
<tr>
<th>Sl no</th>
<th>Country</th>
<th>Coal Resource (Billion Tonnes)</th>
<th>CBM Resource (Trillion cu. feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Canada</td>
<td>7000</td>
<td>229 - 2697</td>
</tr>
<tr>
<td>2</td>
<td>Russia</td>
<td>6500</td>
<td>469 - 2598</td>
</tr>
<tr>
<td>3</td>
<td>China</td>
<td>4000</td>
<td>579 - 1200</td>
</tr>
<tr>
<td>4</td>
<td>USA</td>
<td>3970</td>
<td>448 - 900</td>
</tr>
<tr>
<td>5</td>
<td>Australia</td>
<td>1700</td>
<td>310 - 510</td>
</tr>
<tr>
<td>6</td>
<td>India</td>
<td>495</td>
<td>49.4 - 91.8</td>
</tr>
<tr>
<td>7</td>
<td>Germany</td>
<td>320</td>
<td>60.1 - 88.3</td>
</tr>
<tr>
<td>8</td>
<td>U.K.</td>
<td>190</td>
<td>38.8 - 60.0</td>
</tr>
<tr>
<td>9</td>
<td>Poland</td>
<td>160</td>
<td>49.4 - 70.6</td>
</tr>
<tr>
<td>10</td>
<td>South Africa</td>
<td>150</td>
<td>49.4 - 70.6</td>
</tr>
</tbody>
</table>

Source: Gupta 2010\(^{26}\)

There are plans for a thermal power station based on the Lupane CBM resources and the reserves are currently being appraised for this. CBM could also provide the feedstock for nitrogenous fertilisers and other methanol chemicals and could be used for the reduction of iron ore to iron/steel (DRI\(^{27}\)).

The recent World Bank mineral production scenarios study forecasts a base-case of 9.8Mt by 2018 (6Mt from Sengwa) and a optimistic case of 40Mt by 2018 (“investor friendly” case) which could subsequently expand to 82Mt\(^{28}\). However, beyond expansions to supply increased domestic power generation (base case), major exports will require huge investments into a new heavy-haul rail corridor to the Mozambican coast. A 40Mtpa railway will require between $3 and $4 billion in investment, but the

\(^{25}\) Morrison 1985
\(^{26}\) Pramod Gupta 2010, Presentation to “Methane to Markets Partnership Expo 2010”, New Delhi, India
\(^{27}\) DRI: Direct Reduced Iron
\(^{28}\) McMahon 2012
resulting tariff could be as low as 3.5USc/t-km during capex repayments and 1.3USc/t-km once repaid. The latter would equate to a cost of around $13/t from Hwange to Maputo/Matola (about 1000km) or $14/t to the proposed new Port of Techobanine. Assuming a long-term international coal price of $70/t (currently $85/t FOB Richards Bay), mining plus concentration costs of around $15/t and a terminal cost of $3/t, such a project would appear to be viable even at the higher rail tariff of $38.5/t to Techobanine ($70-(15+38.5+3) = $13.5 = $540 million/an for 40Mtpa). See Table 6.

Table 6: Crude 40Mtpa heavy haul rail costs & tariffs

<table>
<thead>
<tr>
<th></th>
<th>1000 km</th>
<th>40Mtpa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capex (G)</td>
<td>G$</td>
<td>$3.6</td>
</tr>
<tr>
<td>Capex interest rate</td>
<td>%</td>
<td>3%</td>
</tr>
<tr>
<td>Repayment period</td>
<td>Years</td>
<td>16</td>
</tr>
<tr>
<td>Capex per ton</td>
<td>$</td>
<td>$90</td>
</tr>
<tr>
<td>Capex/t-km</td>
<td>$</td>
<td>$9.9</td>
</tr>
<tr>
<td>Tariff w/capex</td>
<td>USc/t-km</td>
<td>3.5</td>
</tr>
<tr>
<td>Cost w/capex</td>
<td>$</td>
<td>$32</td>
</tr>
<tr>
<td>Tariff opex only</td>
<td>USc/t-km</td>
<td>1.7</td>
</tr>
<tr>
<td>1st year opex only</td>
<td>Year</td>
<td>21</td>
</tr>
<tr>
<td>Cost opex only</td>
<td>$</td>
<td>$15</td>
</tr>
</tbody>
</table>

Source: Jourdan 2012

1.2.5 ASBESTOS

Asbestos mining peaked in 1974 at 281kt and between 1965 and 1978 asbestos was the country's principal mineral in terms of the value of production but fell to second place behind gold from 1979 till the financial crisis when production collapsed and has not recovered with dollarisation (Figure 10).

The main producer was Shabanie and Mashaba Mines (Pvt) Ltd. which has three mines in the south of the country (Shabanie, Gaths and King mines), near Masvingo, and was owned by Turner Newall Plc (UK), but is now owned by Zimbabwean investors.

Asbestos is increasingly being substituted for due to its perception as a health hazard in the West, but over the last few years the long fibre chrysotile (white asbestos) has been recognised as being a much less dangerous variety and new markets are opening up in Asia. By 2010 asbestos production had fallen to about 2kt. However, reserves are sufficient to return to previous production levels (>250ktpa), provided that markets and capital can be secured. A small proportion of production was consumed locally for the manufacture of asbestos cement products and the possibility of local asbestos spinning for the manufacture of fire-proof material was investigated in the 90s but no plant was built.

1.2.6 NICKEL

Anglo American Corporation of South Africa (AAC of SA) had the majority share in Bindura Nickel Corporation (BNC) of Zimbabwe which was bought by Mwana Africa (SA) in 2003-5. BNC used to operate two nickel mines in the NE of the country, namely Trojan and Madziwa (now closed), and two in the SW, Shangani and Epoch (now closed). They also operate a nickel smelter and refinery, BSR, at Bindura. In addition, nickel and copper matte was toll refined from BCL Limited (Botswana) and other copper-nickel suppliers. In November 2008 Bindura Nickel Corporation was placed on care and maintenance, due to the hyper-inflation crisis. Mwana intends to reopen the
operations as soon as they have secured the requisite capital. They also plan to bring the Hunters Road nickel deposit into production, which has resources of 36.4Mt grading 0.55% nickel. Overall, nickel output has been on a steady decline since 1980 (Figure 11), though it could still recover to about 10ktpa.

![Ni Production (tons)](image)

Source: COMZ 2012

Figure 11: Nickel Production

Until 1982 nickel was produced by Rio Tinto Zimbabwe Ltd., but in that year the Empress Nickel Mine was shut down due to a combination of falling grades, depleted reserves and depressed prices. The Empress nickel refinery at Eiffel Flats started processing Cu-Ni matte from BCL’s Selebi Phikwe mine in Botswana in the second half of 1985 after having been closed for two years and has continued to toll-refine since (currently around 8kt/an of Ni).

The World Bank scenario study forecasts a base-case production of 10.2ktpa nickel by 2018 and an optimistic scenario (assuming policy changes) of 20ktpa and employment of 1400, requiring investments of $186 million at a cost of $62 million.

1.2.7 COPPER

30 They have had difficulty in raising offshore capital due to uncertainty surrounding the indigenisation policy.

31 McMahon 2012.
Copper peaked in 1973 at 52 kt, but since then it has steadily declined to a low of 2.3 kt in 2003 (Figure 12). The large majority used to be produced by companies under the parastatal ZMDC, namely, MCM (Mhangura Copper Mines, now closed) and Lomagundi Smelting & Mining (LSM, also closed), with smaller amounts produced as a by-product from the nickel mines (Bindura). The ZMDC took over the interests of the Messina group of South Africa in 1982. The main reason for this intervention on the part of the state appears to have been the depressed price of copper causing Messina to threaten to shut down some of the poorer mines or, failing that, to withdraw completely. All the mines used to be in the centre-north part of the country in the Lomagundi district near Chinhoyi. The Asian boom high copper prices did not trigger a reopening of operations due to the domestic economic crisis, but dollarisation is likely to lead to a reassessment of the remaining resources.

ZMDC has also considered a new mine, Copper Queen, 90 km WSW of Alaska Mine. The ore grades at 1.3% Cu, 1% Pb and 3.4% Zn, with significant amounts of silver. Geological reserves stand at 8 million tonnes of sulphide ore, but the economic crisis pushed the project onto a back-burner. It could make the country self-sufficient in lead and zinc which are presently imported. The main problems with the project appear to be the complex mineralogy and in raising the capital. The World Bank scenario study (McMahon 2012) makes no forecasts for the reactivation of copper mining.

Figure 12: Copper Production (1970-2003)

Bindura Nickel Corporation, used to produce a small amount of copper (~1000tpa) at their refinery BSR at Bindura and from toll-refined matte from BCL in Botswana. The RioZim Empress Nickel Refinery at Eiffel Flats also used to toll-refine about 17.5ktpa of matte from BCL and Tati Mines in Botswana. About 3,000 tonnes/an. of cathode
copper used to be consumed locally by Cafca (wire and cables), Almin Industries, various copper alloy foundries and by a copper chemicals manufacturer (Cecon).

1.2.8 CHROMITE

Chromite ore was first mined in 1906 and first exported in 1907. Production peaked in 1975 at 876kt before falling to a 20 year low of 431kt in 1983, a drop of 51%. Since then it recovered 780kt in 2001 and then collapsed to 194kt in 2009 (Figure 13).

Exports of chromite ore fell off rapidly from 1968 zero by 1984, due to the increasing off-take by the ferrochrome smelters. Zimbabwe Mining and Smelting Company (Zimasco), is the main producer and has four mines (Shurugwe, Valley, Lalapanzi and Mutorashanga) and a smelter in Kwekwe. Forecast production for 2012 is at ~480kt of chromite ore and ~170kt of FeCr alloy (constrained by power shortages). Ferroalloy production is presented in Figure 14.
Zimbabwe Alloys (Zimalloys) Limited had four mines (Great Dyke, Caesar, Netherburn and Inyala), a quartz quarry (Broadside) and a smelter which was commissioned in 1953 and is situated in Gweru. Ore was also purchased from cooperatives, tributors and contractors. All of the mines, except Inyala, used to exploit the thin seams of the stratiform deposits of the Great Dyke where mining is expensive and the friable chromite ore produced needs to be agglomerated before smelting, adding significantly to costs. A local company Benscore Investments, bought the company from Anglo American in 2005. Zimalloys raised $60 million in 2012 to reactivate production to 250ktpa of alloy32. It reportedly controls 30% of the country’s chromite reserves.

Zimbabwe has the world’s largest reserves of high-chromium chromite ores estimated at between 580Mt and three billion tonnes, the large majority of which are the stratiform seams of the Great Dyke. The latter figure represents 84% of world high-chromium reserves. Due to technical advances in stainless steel making the Zimbabwean high-chromium ores have lost their premium on the world market, but ferrochromium alloys made from it are still favoured by steelmakers.

The World Bank scenarios study forecasts that by 2018 Zimasco will produce \textasciitilde550kt of chromite and \textasciitilde300kt of alloy (base-case) and \textasciitilde450kt of alloy under an optimistic scenario.

32 The Herald 7th June 2012.
scenario, requiring an investment of about $355 million. If the Zimalloys reported figure is added then national alloy output could reach 550kt (base-case) and around 800kt (optimistic case) by 2018.

Although Zimbabwe produces all the constituents of stainless steel (ferrochrome, nickel and iron) there are no plans for the creation of a plant for its production. Small amounts of stainless, however, are produced on a "once-off' basis by the small foundries for stainless castings and Zimalloys had an embryonic plan for the production of high grade stainless precision castings in the early 90s, which came to naught. The production of calcium carbide was investigated for the future supply of the domestic market for acetylene and, possibly, PVC’s, and a pilot furnace was commissioned, but the project was abandoned in the 90s.

1.2.9 IRON AND STEEL

Iron ore production peaked in 1992 at 1.46 Mt, and then fell to zero in 2008 (Figure 15). Exports of iron ore ceased in 1968 and since then, all ore has gone to Zisco. The Zimbabwe Iron and Steel Company Ltd. (Zisco) is almost completely state owned and started operations in 1948 at Redcliff near Kwekwe in the centre of the country. Iron ore is produced by its 100% subsidiary Buchwa Iron Mining Company Ltd. (Bimco) from two mines (Buchwa and Ripple Creek) and is all destined for its iron and steel works. Overall grade at Buchwa is 61.6% Fe and 0.2% Mn. However, current ROM reserves at Buchwa are almost exhausted and a sintering plant was established to handle the friable Ripple Creek ore, which became the principal feed from 1995. Reserves of limonite ore at Ripple Creek are around 40 Mt, grading 51.4% Fe and 2.1% Mn. BIMCO also has claims over the huge Mwanesi Range low grade (40% Fe) BIF resource, estimated at over 30Gt.

33 McMahon 2012,
34 ROM: run-of-mine
35 BIF: Banded Ironstone Formation
36 Worst B. G. 1962
Roughly 80% of iron and steel production used to be exported when Zisco was operational. Zisco had a maximum capacity of one million tons and was the only integrated steelworks in the region outside South Africa, with much of its exports going to regional customers.

There has been no ore or steel production since 2007 due to the economic meltdown and Zisco’s unserviceable debt burden. In March 2006, India’s Global Steel Holdings was given a 20 year management contract for the steel plant, but the deal fell through. In March 2011, Essar Africa Holdings (a member of the Essar Group of India) and the Government of Zimbabwe announced that they had reached an agreement for the revival of Zisco and in December 2011, Essar Group announced that two JVs had been set up between Essar Africa Holdings and the Government of Zimbabwe, which would acquire all steel and mining related assets of Zisco and its subsidiaries. The JVs are NewZim Steel Private Limited (tasked with developing ZISCO’s steel-making capacity) and NewZim Minerals Private Limited, which will acquire the Buchwa Iron Mining Company Ltd. and develop its assets. Essar Africa Holdings will have a 60 % stake in NewZim Steel and an 80 % stake in NewZim Minerals and Essar will reportedly invest $750M in the deal. However it has also been reported that Bimco will be transferred to the ZMDC which would then do a JV with Essar.

It appears likely that Essar are really after the huge low-grade Mwanesi resource (33Gt of ore at 40% Fe) that could be upgraded and feasibly support a massive iron ore export project of 80Mtpa, via Mozambique (Table 7). This is discussed in greater detail.
in the section titled “Case Study: The Putative Mwanesi Development Corridor (SDI)”, under the section on Spatial Linkages.

If the Mwanesi Range resources are put out to tender against a massive iron ore export corridor to the Mozambican coast and iron/steel value-addition, then ore exports could reach 80Mtpa by 2018 and iron/steel exports 3-5Mtpa which could generate profits of around $3 billion per annum (see section on “Case Study: The Putative Mwanesi Development Corridor (SDI)”, later in this report). This could eventually contribute about $1.5 billion/annum to the fiscus, once the threshold ROI of the proposed 50% Resource Rent Tax is breached (see section on “Resource Rent Tax (RRT)” below).

Table 7: Rough 80Mtpa heavy haul rail costs & tariffs

<table>
<thead>
<tr>
<th>Element</th>
<th>Units</th>
<th>80Mtpa*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capex (G)</td>
<td>G$</td>
<td>$7.5</td>
</tr>
<tr>
<td>Capex interest rate</td>
<td>%</td>
<td>3%</td>
</tr>
<tr>
<td>Repayment period</td>
<td>Years</td>
<td>16</td>
</tr>
<tr>
<td>Capex per ton</td>
<td>$</td>
<td>$94</td>
</tr>
<tr>
<td>Capex/t-km</td>
<td>$</td>
<td>$10.3</td>
</tr>
<tr>
<td>Tariff w/capex</td>
<td>USc/t-km</td>
<td>3.5</td>
</tr>
<tr>
<td>Cost w/capex</td>
<td>$</td>
<td>$32</td>
</tr>
<tr>
<td>Tariff opex only</td>
<td>USc/t-km</td>
<td>1.3</td>
</tr>
<tr>
<td>1st year opex only</td>
<td>Year</td>
<td>21</td>
</tr>
<tr>
<td>Cost opex only</td>
<td>$</td>
<td>$11</td>
</tr>
</tbody>
</table>

*80Mtpa option is electrified dual line

Source: Jourdan 2012

1.2.10 DIAMONDS

Kimberlites: There are numerous kimberlite pipes in Zimbabwe but most are not diamondiferous. The River Ranch kimberlite pipe was discovered by De Beers in 1974 but went through several changes of ownership and is now caught up in disputes around the estate of the late General Mujuru. It was never a major producer but reportedly still has resources. In 1997 RTZim (Rio Tinto Group) discovered the Murowa pipes (~40km from Zvishavane) and mining started in 2004 (reserves are estimated at

~20Mt of ore). In 2011 it produced 367,000 carats and 565,000 carats are forecast for 2012.

Alluvial: In 2006 alluvial diamonds were discovered in the Chiadzwa area of Marange District (~90km SW of Mutare), which led to a chaotic “diamond rush” until the state stepped in and regularised the workings through the creation of several JVs with ZMDC. In 2011 production from the four JVs was around 9M ct and 11M ct are forecast for 2012 (Figure 16: Diamond Production (Mct). Diamond production, exports and unit values from 2003 to 2010 are presented in Table 8. However, due to the secrecy surrounding the Marange operations the current production figures could be significantly higher. Unlike elsewhere in the world where alluvial deposits generally have a higher gem proportion and unit value than kimberlite deposits, the value of the Marange diamonds averages about 25% less than the Murowa ones.

Table 8: Zimbabwe Diamond Production, Exports & unit value

<table>
<thead>
<tr>
<th>Year</th>
<th>Production (ct)</th>
<th>Exports (ct)</th>
<th>Exports(MUSD)</th>
<th>Export Price ($/ct)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>26 870</td>
<td>26 870</td>
<td>2 219</td>
<td>82.58</td>
</tr>
<tr>
<td>2004</td>
<td>44 454</td>
<td>18 481</td>
<td>3 582</td>
<td>80.58</td>
</tr>
<tr>
<td>2005</td>
<td>248 264</td>
<td>261 538</td>
<td>39 429</td>
<td>158.82</td>
</tr>
<tr>
<td>2006</td>
<td>1 046 026</td>
<td>264 585</td>
<td>30 057</td>
<td>28.73</td>
</tr>
<tr>
<td>2007</td>
<td>695 015</td>
<td>489 170</td>
<td>23 377</td>
<td>33.64</td>
</tr>
<tr>
<td>2008</td>
<td>797 198</td>
<td>327 834</td>
<td>26 693</td>
<td>33.48</td>
</tr>
<tr>
<td>2009</td>
<td>963 502</td>
<td>1 349 172</td>
<td>28 901</td>
<td>30.00</td>
</tr>
<tr>
<td>2010</td>
<td>8 435 224</td>
<td>8 424 384</td>
<td>320 237</td>
<td>37.96</td>
</tr>
<tr>
<td>Total</td>
<td>12 256 553</td>
<td>9 812 862</td>
<td>474 495</td>
<td>38.71</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Production (ct)</th>
<th>Exports (ct)</th>
<th>Exports(MUSD)</th>
<th>Export Price ($/ct)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>(9 565 000)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Total</td>
<td>24 513 106</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sources: Kimberley Process 2012 (www.kimberleyprocess.com)

The World Bank mineral scenarios study estimated that diamond output could increase to about 16M ct and employment to about 1500 by 2018. The study also notes that, due to the stockpile built up during the Kimberley Process Certification (KPC) there could be a backlog worth $1 billion to $5 billion which will be put on the market in the next few years which could result in a fiscal “windfall”.

38 McMahon 2012
1.2.11 OTHER MINERALS

The most important by value were: limestone, phosphates, silver, graphite, lithium minerals, tantalite concentrates, cobalt and rough emeralds. The most important of these in terms of world output, is lithium (petalite concentrate) which was approximately 7.6% of world production in 1988 (Figure 17: World Lithium Resources). All lithium minerals were produced by Bikita Minerals (Pvt) Ltd., which used to be owned by RTZ plc (50.5%), but is now Zimbabwean owned. The Bikita Mine (60km east of Masvingo) is one of the richest lithium pegmatites in the world (1.4% Li). Reserves are estimated at 11 Mt of caesium-petalite (largest petalite deposit in the world) and production runs at about 60ktpa of Li/Cs ore.
Almost all limestone quarrying was for cement production at Cleveland (about 500 kt/an), Sternblick (about 400 kt/an), Sino-Zim (about 300 kt/an), and for steel production at Zisco (about 430 kt/an), but these contracted during the economic crisis (Zisco has shut down) and are now returning to full capacity. Small amounts are also quarried for lime production (Early Worm Mine) and for agriculture (Springbok). There are also numerous other known deposits with large reserves, but none with the specific characteristics necessary for the Zimalloys ferrochrome plant which has to import low sulphur and phosphorus lumpy lime from South Africa.

Virtually all silver production, is a by-product of other mining, mainly from copper and gold production. Antimony is also produced as a by-product of gold production (Indarama) and by some small mines such as Belingwe Star. Most of the country’s graphite production is from Zimbabwe Germany Graphite Mines Ltd.’s Lynx mine in Hurungwe District, jointly owned by ZMDC (50%) and Grafitwerk Kropfmuhl AG (50%) of Germany. Tantalum concentrate production comes from small-scale pegmatite workings, but in the past as a by-product of tin mining (Kamativi). Small quantities of tungsten concentrates are also produced from pegmatites such as R.H.A. mine and Richardson Kop.

Tin production peaked in 1985 at 1.5 kt but output declined due to depleting reserves and ceased in 1994 (Figure 18). Kamativi Tin Mines Limited (KTM) in the west of the country was responsible for almost all of the tin production. Small operations started on the pegmatite in 1936 and in 1970 the state Industrial Development Corporation (IDC) took a majority share (later transferred to ZMDC in 1986). The mine also used to produce small amounts of tantalite, spodumene (Li) and beryllium. ZMDC is reassessing the viability of reactivating the mine.
Phosphate rock (apatite) is produced by Dorowa Mining (Pvt) Ltd. in the Nyazura district, for their mother company, Zimphos, for fertilizer production. Zimphos produces single and triple phosphate after treating the ore with sulphuric acid.

Zimphos is a wholly-owned subsidiary of Chemplex Corporation which was in turn owned by AECI of South Africa, (Anglo American), but the foreign (AECI) holding was bought out by the state Industrial Development Corporation (IDC), Norsk Hydro of Norway (now Yara Zimbabwe) and local shareholders in 1990. The current structure is presented in Figure 19.

Sulphur occurs in iron pyrite and is mined at the Iron Duke mine near Mazowe (ex Anglo American Corporation). Output used to be about 50ktpa and was all destined for the Zimphos sulphuric acid plant in Msasa for phosphatic fertiliser production (Zimphos).

Bauxite production used to come from the Alumina mine belonging to E.C. Meikle Ltd., on the eastern border, but since 1987 all production has come from the other side of the border in Mozambique.
Magnesite production is mainly destined for export to South Africa, except for a small amount which is used for the production of fertilizer. It is mined by Kadoma Magnesite at the Barton Farm Magnesite Mine. Several other deposits are also known (Mat Mine, Calac Deposit and Bukwa Magnesite). The possibility of producing magnesite refractory bricks was investigated by the ZMDC as a SADC regional project before the economic meltdown.

Gem stones come from numerous small workings and include aquamarine, beryl, citrine, amethyst, garnet, iolite, tourmaline, chalcedony and emeralds. The only large scale production was from the Rio Tinto emerald mine, Sandawana (now ZMDC).

Kyanite production is from ZMDC’s Ky mine in the north-east. It is consumed locally by the ferrochrome smelters as a flux and is also used for the manufacture of fire assay crucibles. Talc is produced from several operations but most production comes from Manzonzo and Simon mines for the filler and cosmetics industries.

Clay production was almost all from the Bemas and Corbut pit (for cement) and the Gwaai River Clay deposit (for ceramics) from the clay horizons in the lower Karoo coal measures at Wankie for the manufacture of refractory bricks by Clay Products Ltd. in Bulawayo, mainly for the steel industry. Production of kaolin is mainly from the Athi pit for the ceramics industry and mica production started in 1919, peaked in the early fifties and was virtually dead by 1960. And the last producer was the Turning Point Mine. Most of the feldspar production was a byproduct of lithium production at Bikita. It was also produced by the Mistress Mine near Harare, mainly for the glass and ceramics industries. Vermiculite is produced for export from the James Mine.

Although the total value of industrial mineral production is low in comparison to the major export minerals, they are in some ways more vital to an integrated resource-based industrial development than the export minerals which are vertically integrated into the industrialised economies.

1.2.12 FUTURE PROSPECTS

A survey carried out by the Chamber of Mines estimates that the mining sector requires between $3-5 billion dollars investment to increase capacity to an average of over 80% within the next three to five years. Table 9 below shows funding requirements by mineral:
Table 9: Future Mining Investment Requirements to Grow Production by 80%

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Minimum Funding Requirement ($G)</th>
<th>Output Growth by 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gold</td>
<td>1.00</td>
<td>455%</td>
</tr>
<tr>
<td>PGMs</td>
<td>1.20</td>
<td>40%</td>
</tr>
<tr>
<td>Ferrochrome</td>
<td>0.25</td>
<td>160%</td>
</tr>
<tr>
<td>Nickel</td>
<td>0.11</td>
<td>400%</td>
</tr>
<tr>
<td>Coal</td>
<td>0.28</td>
<td>218%</td>
</tr>
<tr>
<td>Diamonds (Kimberlite only)</td>
<td>0.30</td>
<td>100%</td>
</tr>
</tbody>
</table>

According to Hawkins (2009) there are seven main constraints to increasing mineral production:

1) “Policy uncertainty and unpredictability.
2) The supply of skills.
3) Physical infrastructure – most notably electricity, but also transport and water.
4) Macroeconomic policy – specifically exchange rate and inflation management.
5) The fiscal regime.
6) Corporate and national governance – restrictions on foreign ownership, extent of compulsory state participation in ownership (if any), remittance of dividends and management fees, and official interference in operational decision-making.
7) National sustainability strategy – government policies designed to influence the nature and pace of resource exploitation.”

The recent World Bank study on future mineral sector scenarios (McMahon 2012) asserts that once there is a good knowledge of mineral resources there “are three main factors that can enhance or constrain the development of a mine: availability of transport infrastructure, access to power, and the policy and fiscal regime impacting the mining sector.” On skills constraints it claims that these can be imported, though it notes that there is also a global shortage. However, the import of skills should be a last resort as foreign professionals often constitute a “5th column” in terms of developing the back and forward ward linkages (mining inputs and beneficiation) as

40 Hawkins 2009 (UNDP), p32.
41 McMahon 2012, p15
they tend to favour familiar imports and off-shore processing options. The priority should always be on developing local skills and attracting the large Zimbabwean skilled diaspora to return home.

Figure 20: Impact of Political Risk on Mineable Resources

Although the policy environment is important for attracting investment into mining, geological prospectivity and known resources could be as important, as evidenced by major investments into risky jurisdictions such as the DRC and Guinea, but which have high prospectivity and known spectacular resources (see Figure 20 on the impact of risk on new mines or mineable reserves). Consequently the infrastructure (power, transport, water) is probably the bigger constraint for Zimbabwe, especially for bulk minerals such as iron ore and coal, though the indigenisation policy has already put on hold several lower return investments that were in the pipeline (see Figure 20). The general impact of “political risk” is similar to the impact of increasing royalties (Figure 38: Conceptual Impact of Royalty on Exploitable Resources): It will increase the necessary investment hurdle rate and consequently increase the requisite cut-off grade to generate the higher hurdle rate (ROI), thereby sterilising resources on existing mines and rendering non-viable potential new mines (Figure 20). Higher infrastructure costs (power & transport) will have the same effect of rendering viable only the higher grade deposits or reserves.
The World Bank study base-case (current infrastructure and policies) predicts that by 2018 mineral revenues could be nearly $5 billion, fiscal revenues over $700 million and employment at 33 thousand, but at an investment cost of $5 billion (Table 10). This excludes the reactivation of iron ore mining for Zisco and asbestos mining.

Table 10: 2018 World Bank Base-case Projections (Current Infrastructure & Policies)

<table>
<thead>
<tr>
<th>Mineral / Metal</th>
<th>Production</th>
<th>Gross Revenues ($M)**</th>
<th>Fiscal Revenues ($M)</th>
<th>Employment</th>
<th>Investment (MUSD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gold k oz</td>
<td>845</td>
<td>1,344</td>
<td>253</td>
<td>15,200</td>
<td>420</td>
</tr>
<tr>
<td>PGM k oz</td>
<td>690</td>
<td>776</td>
<td>50</td>
<td>8,200</td>
<td>816</td>
</tr>
<tr>
<td>Diamonds, kimberlite kct</td>
<td>565</td>
<td>99</td>
<td>26</td>
<td>430</td>
<td>0</td>
</tr>
<tr>
<td>Diamonds, alluvial M ct</td>
<td>12</td>
<td>600</td>
<td>169</td>
<td>1,000</td>
<td>0</td>
</tr>
<tr>
<td>Coal Mt</td>
<td>9.8</td>
<td>735</td>
<td>61</td>
<td>3,750</td>
<td>3,000</td>
</tr>
<tr>
<td>Chromite ore kt</td>
<td>549</td>
<td>115</td>
<td>1</td>
<td>under FeCr</td>
<td>85</td>
</tr>
<tr>
<td>Ferrochrome (FeCr) kt</td>
<td>306</td>
<td>840</td>
<td>76</td>
<td>3500*</td>
<td>0</td>
</tr>
<tr>
<td>Nickel kt</td>
<td>19</td>
<td>301</td>
<td>93</td>
<td>870</td>
<td>62</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>4,810</td>
<td>729</td>
<td>32,950</td>
<td>5,023</td>
</tr>
</tbody>
</table>

“In the base case most of the expansion is due to the revitalization of many gold operations (due to the continued very high prices), the recapitalization of Hwange, the reopening of the nickel mines, and the increase in diamond production at Marange. In fact, it is likely that the majority of the difference in the base 2018 scenario and the optimistic or investor friendly scenario is due to the embedding of the indigenization policy in a general scenario of political instability”

The optimistic (“investor friendly”) case estimates that by 2018 mineral revenues could be over $11 billion, fiscal revenues over $1.5 billion and employment above 56 thousand, with investments $11.7 billion (Table 11).
Table 11: 2018 World Bank Optimistic Projections (No Infrastructure or Policy Impediments)

<table>
<thead>
<tr>
<th>Mineral / Metal</th>
<th>Production</th>
<th>Gross Revenues ($M)**</th>
<th>Fiscal Revenues ($M)</th>
<th>Employment</th>
<th>Investment (MUSD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gold k oz</td>
<td>2,510</td>
<td>3,991</td>
<td>759</td>
<td>27,600</td>
<td>2,500</td>
</tr>
<tr>
<td>PGM k oz</td>
<td>995</td>
<td>1,119</td>
<td>81</td>
<td>10,300</td>
<td>815</td>
</tr>
<tr>
<td>Diamonds, kimberlite kct</td>
<td>1,000</td>
<td>175</td>
<td>45</td>
<td>800</td>
<td>100</td>
</tr>
<tr>
<td>Diamonds, alluvial M ct</td>
<td>15.2</td>
<td>760</td>
<td>214</td>
<td>1,000</td>
<td>150</td>
</tr>
<tr>
<td>Coal Mt</td>
<td>40</td>
<td>3,000</td>
<td>242</td>
<td>6,000</td>
<td>7,000</td>
</tr>
<tr>
<td>Chromite ore kt</td>
<td>539</td>
<td>113</td>
<td>1</td>
<td>(under FeCr)</td>
<td>0</td>
</tr>
<tr>
<td>Ferrochrome (FeCr) kt</td>
<td>447</td>
<td>1,229</td>
<td>99</td>
<td>7,100*</td>
<td>340</td>
</tr>
<tr>
<td>Nickel kt</td>
<td>28</td>
<td>459</td>
<td>142</td>
<td>1,400</td>
<td>186</td>
</tr>
<tr>
<td>Iron ore Mt</td>
<td>2.5</td>
<td>225</td>
<td>3</td>
<td>2,000</td>
<td>600</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>11,071</td>
<td>1,587</td>
<td>56,200</td>
<td>11,691</td>
</tr>
</tbody>
</table>

However, these projections exclude major expansions for the export bulk minerals (iron ore and coal) and any reactivation of asbestos or copper mining. If the development of an iron ore export corridor for the huge Mwanesi iron ore resource goes ahead (80Mtpa), with expanded iron/steel exports, and a heavy-haul coal export rail link to Mozambique is established (40Mtpa), then the gross revenues could be more like $24 billion and fiscal revenues over $3 billion, without the introduction of a Resource Rent Tax (RRT). The introduction of a RRT for all mining of 50% (once a "normal" ROI is achieved) could generate fiscal revenues in the order of $6 billion per annum, once the ROI threshold is surpassed, using the above expansions in production and current prices.

However, even the World Bank report base-case is constrained by the current power shortages. The scenario presented in Table 10 would need an estimated 700MW of capacity (Table 12). Accordingly, power is arguably the greatest constraint to an expansion of the minerals sector and the planned generation rehabs and expansions should be urgently expedited with a parallel assessment of short to medium term import options.
Table 12: Additional Power for Potential Mining Expansion

<table>
<thead>
<tr>
<th>Mineral/Metal</th>
<th>Production increase</th>
<th>Power per unit (kWh)</th>
<th>Additional Power Needs (M kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gold</td>
<td>2.23M oz</td>
<td>1000</td>
<td>2,230</td>
</tr>
<tr>
<td>Iron Ore</td>
<td>2.5Mt</td>
<td>120 (to pig iron)</td>
<td>300</td>
</tr>
<tr>
<td>Steel</td>
<td>1.2Mt</td>
<td>700</td>
<td>840</td>
</tr>
<tr>
<td>Nickel</td>
<td>28.5 kt</td>
<td>600</td>
<td>17</td>
</tr>
<tr>
<td>Coal</td>
<td>35Mt</td>
<td>40</td>
<td>1,400</td>
</tr>
<tr>
<td>PGM</td>
<td>325,000 oz</td>
<td>610</td>
<td>198</td>
</tr>
<tr>
<td>Ferrochrome</td>
<td>285 kt</td>
<td>4000</td>
<td>1,140</td>
</tr>
<tr>
<td>Diamonds</td>
<td>6.8m carats</td>
<td>8*</td>
<td>54</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>6179M kWh</td>
</tr>
<tr>
<td>Additional capacity required</td>
<td></td>
<td></td>
<td>692 MW</td>
</tr>
</tbody>
</table>

* assumes a grade of 1ct/t.. Source: McMahon 2012, Table 6.

1.2.13 MINERALS MARKETING

Before 1983 marketing was done by the companies, usually through agents in the OECD countries. Up until the beginning of 1980 sanctions were applied to the then Rhodesia, so the marketing methods tended to be devious and clandestine. Since 1983 all mineral exports, except gold, have been controlled by the Minerals Marketing Corporation of Zimbabwe (MMCZ) which was set up by government in 1982 officially to rationalise selling arrangements, remove restraints on minerals trade and to reduce costs to producers, but unofficially to eliminate transfer pricing.

It was initially received by the industry, especially the TNC's, with great foreboding and they fought unsuccessfuully against its establishment. However in the 80s and 90s they appeared to have come to terms with it, particularly as, in some instances, higher prices have been obtained and middlemen have been eliminated and, more importantly, in many cases the old agents and channels are still being used. There have however been well-documented instances where the old agents have been receiving inflated commissions and have not always managed to obtain the optimal world market price for the minerals sold\(^{43}\).

\(^{43}\) Confidential study by Peter Robbins (London Metals Trader)
Although the initial establishment of the MMCZ was seen as a victory of the government's "socialist" policies immediately after independence, there appears to be good evidence that the inefficiency of the MMCZ may be more expensive than the losses through transfer pricing. A confidential assessment of the MMCZ in the 90s concluded that millions of dollars were being lost, not only through inefficiency and the use of old TNC agents, but also possibly through corruption, but the issue was not taken up by the Attorney General's Office. The range of Zimbabwe's mineral exports and the generally small quantities of any one mineral make it difficult for the MMCZ to have people proficient in all aspects of all minerals traded. A minerals marketing monitoring commission might possibly be a more appropriate strategy given the skills constraints of the MMCZ, where spot checks were made on random deals, possibly using outside consultants, with heavy penalties for transfer pricing.

1.2.14 LABOUR

Workers committees were instituted shortly after independence in 1980. The principal workers union is the Associated Mine Workers Union of Zimbabwe (AMWUZ), which is affiliated to the Zimbabwe Congress of Trade Unions (ZCTU). Minimum wages are set by government in consultation with the companies and the union, but from 1980 until the “hyper-inflation” the minimum only barely kept pace with inflation. Since dollarisation wages have stabilised. There have been extremely few work stoppages or strikes and most that have occurred have been over specific mine related problems rather than the national minimum wage rates or rights of workers.

A large proportion of mine labour used to be foreign (60% in 1965 and 47% in 1972), mainly Malawians and Mozambicans, but since independence most of them have been naturalised. The slump in metal prices in the mid-eighties had a severe effect on the union; membership fell from roughly 30,000 in 1980 to 20,000 in 1985 then grew to 31,000 in 1989, representing over half of the workforce. Membership shrunk dramatically during the economic meltdown, but by 2011 AMWUZ membership had recovered to 25,000.45

45 AMWUZ interview 2012.
The Labour Relations Act of 1985 got a mixed response from both workers and management. From the workers' point of view, the positive aspects of the Act are the right to join a union, protection from discrimination, protection of union officials from victimisation and that the employer will in future send union dues direct to the union and non-members maybe levied. Since 1980 permission from the Ministry of Labour has been necessary in order to fire or lay-off a worker.

On the negative side are severe controls on the right to strike and the wide discretionary powers given to the Minister of Labour who can nullify union congress election results and control the use of union funds. In the opinion of the union the Act attempts to limit union struggle to economic objectives only thereby depoliticising union activity.46

Other legislation affecting mine labour is the Emergency Powers Act, the Pneumoconiosis Act, the Workers Compensation Act and the Mines and Minerals Act which has Health and Sanitation Regulations.47

Up till the recent economic crisis, the frequency of expatriates on foreign contracts was extremely low, but the number of professional and managerial staff from the "settler" section of the population was extremely high at over 60%. Very few indigenous professionals and managers were produced for the mining industry during the racist colonial/settler period. This improved over the '80s and '90s, especially through mining company in-house training, but there was a massive loss of indigenous skills during the first decade of the 20th century, due to the economic meltdown.48

In the 1980's a Department of Mining Engineering and a Department of Metallurgical Engineering were opened at the University of Zimbabwe with West German aid. The University also has a long-standing Department of Geology, a geophysics section under the Physics Department, and an Institute of Mining Research (IMR). At a technical level, there is a School of Mines in Bulawayo for the training of mining and mineral processing technicians. However, all of these were devastated by the financial crises and have still not recovered since dollarisation (Hawkins 2009).

46 AMWUZ interview 2012.
48 See Hawkins 2009
1.2.15 LEGISLATION

The right of searching for and mining of all minerals is vested in the President, in terms of the Mines and Minerals Act. To prospect a prospecting licence or an Exclusive Prospecting Order (EPO) must be obtained by or with an Authorised Prospector. An EPO is valid over a defined area, for a limited time period and for the defined mineral/s only. From this right stems the right to peg a claim and dispose of the minerals won in perpetuity, so long as minimum work is done or retention fees are paid. Unlike other countries in the SADC no special mining licence is required. The land owner is recompensed for the loss of the land use at a nominal rate by government.

In terms of tax, repatriation of profits and other fiscal matters, the mining companies fall under the general laws governing these aspects for the whole of the economy. However, in 1989, with the launching of the New Investment Code, it was announced that a new tax regime specifically for mining was to be formulated that would take into account the high risk nature of the mining industry. Corporate income tax (CIT) is 25% of the taxable income of the company. In terms of mining companies the following allowances apply: They can deduct the initial capital expenditure as it is incurred or over a number of years over the life of the mine up to a maximum of ten years; expenditure incurred in exploration can be deducted immediately or carried forward and allowed against subsequent mining income; a depletion allowance of 5% of the value of mineral production and a replacement allowance for later capital expenditure are both deductible.

In the seventies legislation existed for the payment of royalties by mining companies at the rate of 4% of output value but was suspended in an arrangement to encourage the companies to install local beneficiation plants (the Alaska copper refinery was built under this scheme) and apparently was reapplied due to the depressed metal markets in the eighties.

New foreign venture capital may be fully repatriated after two years after deducting amounts already remitted. The balance can then be remitted over six years in equal amounts with the interest accrued. Under the new Foreign Investment Code of 1989 investments accorded Venture Capital status will have a minimum remittability of 50%, negotiable to 100%, of after tax profits as dividends which are then subjected to a non-residents shareholders tax of 20%, unless there is a tax agreement with the country of origin of the investment.
Mining companies with more than 25% foreign ownership may not borrow locally more than 35% of the shareholders’ funds plus the ratio of the local share interest to the foreign share interest multiplied by the 35% of the shareholders’ funds, or they lose the right to repatriate profits (for other companies 25%). This formula is to encourage foreign concerns to bring new, foreign, capital into the country for new capital investment. It also encourages locally incorporated foreign companies to raise capital for local expansion by increasing the equity base locally, thereby diluting the foreign holding.\(^\text{49}\)

From independence to 1995 there was virtually no new foreign investment in mining other than RTZ plc (Renco gold mine, 6 MGBP in 1980) and Cluff Minerals plc ($5M in the Freda-Rebecca gold mine in 1987/8). The reasons for this were the depressed outlook for base metals over most of the period, the low proportion of profits that could be repatriated (35% until 1989) and the perceived regional instability arising from the South African apartheid regime’s erstwhile policy of destabilisation of neighbouring states.

In the 90s the MMA was amended to cater for a Special Mining Lease (SML) for the large BHP/Utah PGM investment. An SPL has its own regime in terms of CIT (15%), royalties (4%), an Additional Profits Tax (APT) and the freedom to market mineral production. To date there are only two SPLs- Zimplats (Implats) and Unki (Angloplats).

Royalties and fees have recently been dramatically increased and now constitute a significant cost factor and deterrent to investment (see Table 13: Changes to Royalties and License Fees)

<table>
<thead>
<tr>
<th></th>
<th>Gold</th>
<th>Diamonds</th>
<th>PGM</th>
<th>Coal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Old Royalty</td>
<td>4.5%</td>
<td>10%</td>
<td>5%</td>
<td></td>
</tr>
<tr>
<td>New Royalty</td>
<td>7%</td>
<td>15%</td>
<td>10%</td>
<td>1%</td>
</tr>
<tr>
<td>Old fees</td>
<td>NA</td>
<td>$1 million and nil</td>
<td>Varied; less than $50,000 in total</td>
<td>$5000 and $100,000</td>
</tr>
<tr>
<td>New fees</td>
<td>NA</td>
<td>$1M application fee for prospecting and $5M registration fee for a claim,</td>
<td>$500,000 application fee and</td>
<td>$100,000 application fee</td>
</tr>
</tbody>
</table>

\(^{49}\) Jourdan 1992
The Zimbabwean minerals sector has undergone significant structural changes over the last 20 years with the exit of the old transnationals (Lonrho, Anglo, RTZ) and the entry of new ones (Implats, Mwana, Metallon and the re-entry of Anglo through Anglo Platinum).

2. MINERAL POLICY ANALYSIS: MAXIMISING THE DEVELOPMENT IMPACT

2.1 MINERAL REGIMES TO ENHANCE THE DEVELOPMENT IMPACT

African mineral regimes, including Zimbabwe, are essentially based on the principle of “free mining”, or ‘free entry’. Barton defines free mining as including:

- a right of free access to lands in which the minerals are in public ownership;
- a right to take possession of them and acquire title by one’s own act of staking a claim; and
- a right to proceed to develop and mine the minerals discovered” (p. 193).

The mining laws broadly fit into the African mineral regimes reformulation process initiated and/or sponsored by the World Bank from the late 1980s until the present and in this regard Professor Bonnie Campbell notes in the Canadian Journal of Development Studies:

“. . . certain elements of the free mining doctrine that animated the nineteenth-century formulation of mining regimes in the American and British spheres have also guided the liberalisation process of African mining regimes over the 1980s and 1990s. One of the ways this came about was through the retrenchment of state authority, which in turn contributed to the institutionalisation of asymmetrical relations of power and influence that had important consequences for local political processes, local participation, and community welfare. The approach consequently helps explain some...”

50 Barton, B.J. (1993) Canadian Law of Mining (Canadian Institute of Resources Law, Calgary).
of the social, economic, environmental, or human rights impacts of these regimes, and prompts one to question the extent to which current mining regime reform processes in Africa can transform the asymmetrical power relations that have typified mining activities on the continent in the past” (p. 199).

Free mining refers to the mining regimes that were established in the European colonial conquests, including Zimbabwe. Laforce et al. maintain that free mining ‘privileges the values and interests of mining companies in contrast to those of Aboriginal groups’, and that it was primarily designed to attract European settlers to expropriate the land and minerals and to neutralise the indigenous populations in the Americas, Africa, Oceania and elsewhere. The mineral regimes of Canada and Australia are modern equivalents of free-mining regimes, which are unsurprisingly strongly favoured by the mining transnational corporations and the World Bank. Zimbabwe’s mining laws contain many elements of a free-mining regime, particularly the first-come-first-assessed (FIFA) principle, which dispenses the people’s mineral assets gratis, rather than seeking price discovery and the maximisation of the developmental impacts. Fundamentally, according to Lapointe, ‘The free-mining system limits the authority and discretionary powers of governments, and as such, governments’ abilities to discharge some of their responsibilities.’

A Zimbabwean resource-based development strategy should rather seek to establish a mineral regime that competitively and transparently concessions all ‘known’ mineral assets as time-limited leases to achieve the optimal resource rents and economic linkages. Price discovery could include both bidding up fiscal criteria (tax rates, such as resource rent taxes) and developmental criteria (industrial linkages, infrastructure and technology development).

The wholesale handing out of Zimbabwe’s mineral assets since liberation has probably lost thousands of jobs, including those that could have been catalysed in other sectors, particularly in up- and downstream investments. In general, mineral investors will tend to have a much better idea of the value of the state’s mineral assets than the state itself, and competitive auctioning (concessions) would be an effective method of achieving fair value and developmental goals, through testing the market’s appetite for establishing industrial linkages. However, where there is little or no geo-data, an auction is unlikely to flush out fair value and these terrains should first be thoroughly surveyed by the state (geosurvey departments or sub-contractors) before auctioning via a time-limited mining concession (lease) or opened up for private exploration (where the asset is considered to be non-auctionable).

Accordingly, following best practice in the oil and gas sector, Zimbabwe should demarcate its territory into areas of unknown mineral assets (high risk), areas of low risk over known mineralised terrains (low risk) and areas of partly known deposits. The first (high risk) would be open to private exploration (current FIFA system), the second (known assets) would be auctioned off as blocks with the state tax-take (resource rent share) as the main evaluation criteria (price discovery) in order to flush out the optimal net present value over the life of the concession for the state, as well as developmental criteria such as jobs, infrastructure, linkages and local capital participation (“indigenisation”). The third category (partly known occurrences) could be reserved for further geosurvey by the ZGS and ZMDC, or explored in partnership with private capital (Figure 21).
Optimised Future Mineral Rights Admin?
Hybrid free mining (FIFA) and tender system

3 Types of Mineral Terrains:
1. Unknown Mineral assets
 - Exploration License (Mining License Automaticity)
 - Progressive Resource Tax (e.g. APT/RRT)
 - “Mining Charter” type socio/labour conditions
2. Partially Known Mineral assets
 - Exploration Terrain (FIFA)
 - Further geo-survey: ZGS, ZMDC, or sub-contractors
 - Private- Risk exploration for future step-in rights.
3. Known Mineral assets
 - Geo-Reserve Terrain
 - Delineation Terrain (Auction)
 - Public Tender on:
 - Tech & Financial Capability
 - Rent share (tax)
 - Up/downstream investment
 - Infra development
 - HRD & R&D, tech transfer
 - Indigenisation, etc.

Mining Concession/License/Lease

Source: Adapted from Jourdan 2011

Figure 21: Zimbabwe- Possible mineral rights licensing regime.

With increased investment in resource mapping and geodata acquisition, areas would be reclassified from high risk to low risk (Figure 21). Unfortunately, the most geologically prospective parts of the country have already been concessioned, usually with no attempt at price discovery or the maximisation of their industrial development potential. Almost all new Zimbabwean mines, ex-diamonds, opened in since liberation were not “discovered”, but were based on known assets, particularly old mines or workings and old exploration targets.

Known and unencumbered mineral terrains could be prepared for public tender by the geological survey department (the GTK in Finland develops mineral targets for tender) or transferred to a state minerals development vehicle (ZMDC?) and prepared for competitive concessions. However, oversight of the auctioning process might be best undertaken by an adequately resourced dedicated resources concessions and compliance commission under the national treasury (Ministry of

55 Mining Journal Supplement, Feb 2009, “Finland”
Finance), which could also oversee other competitive concessions (PPPs56, e.g. infrastructure) and carry out the ongoing monitoring and evaluation (M&E) of the concession conditions (including industrial commitments). An example of a bid scoring matrix, for the public tender of known deposits, that attempts to maximise the mineral linkages, is presented in Table 14: Example of a mineral concession bid evaluation matrix.

Table 14: Example of a mineral concession bid evaluation matrix

<table>
<thead>
<tr>
<th>Element</th>
<th>Mechanism</th>
<th>Scoring (example: $100%$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiscal: Tax Rate (e.g. RRT)</td>
<td>Bid up from base tax rate</td>
<td>Top bid 35, bottom 0, pro-rata in-between</td>
</tr>
<tr>
<td>Spatial: Extra infrastructure</td>
<td>% extra capacity times the base-need capex for power, transport, water = Σ extra$</td>
<td>Top bid 15, bottom 0, pro-rata in-between</td>
</tr>
<tr>
<td>Downstream investments</td>
<td>% extra VA above base product (ore, conc) exports @ 5y, 10y, 15y = Σ %VA</td>
<td>Top bid 20, bottom 0, pro-rata in-between</td>
</tr>
<tr>
<td>Upstream investments</td>
<td>% local VA purchases @ 5y, 10y, 15y = Σ %VA</td>
<td>Top bid 20, bottom 0, pro-rata in-between</td>
</tr>
<tr>
<td>Knowledge formation targets</td>
<td>Bid up local HRD/R&D spend from 5% of pay-roll/an</td>
<td>Top bid 10, bottom 0, pro-rata in-between</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>100%</td>
</tr>
</tbody>
</table>

Σ: sum of; RRT: Resource Rent Tax; VA: value added; HRD: Human Resources Development; R&D: Research & Development

Source: adapted from Jourdan et al, 2012.

Zimbabwe’s mineral lease system is based on the staking of a claim (FIFA system) and has its origins in the system adopted by the BSAC when it conquered the country and is fairly typical of the colonial mineral regimes put in place by European invaders in the 19th Century all over the euro-imperial world (but not in Europe itself!). However, unlike most of the other FIFA colonial regimes, a mineral right (claim/block) is not time-limited and can be held in perpetuity, provided that retention fees are paid or minimum work is carried out annually.

The current system (Figure 22) is sub-optimal and includes the following flaws:

- it allows known deposits to be claimed (FIFA) with no attempt at competitive price discovery;
- it confers infinite exploitation rights (if fees are paid or work is done);

56 PPP: Private-Public-Partnership
• it sterilises ground by immediately reserving exploration areas (EPOs57) whilst they await approval. This has apparently sterilised almost all of the nation’s prospective acreage (no EPOs have been granted in the last 10 years).

Figure 22: Mineral Rights Administration

There are wide ranging amendments to the Act in the pipeline (Figure 22) that clean up most of the obsolete sections and detailed modalities that should come under separately promulgated Regulations. However, it only corrects one of the above flaws (#2: Infinite mining rights), and then only for larger mines (not for ASM). The other two major flaws (FIFA rights for known state assets and immediate reservation of prospecting ground) are perpetuated.

2.1.1 SUGGESTED FUTURE MINERAL RIGHTS ADMINISTRATION SYSTEM

57 EPO: Exclusive Prospecting Order
Given the drawbacks in the current Act and in the proposed amendments, consideration should be given to developing a new state-of-the-art Minerals Act (clean sheet) that administers the nation’s mineral assets in order to maximise the developmental impact of their exploitation. Such a new “clean sheet” Act would have to also include comprehensive transitioning arrangements that give security of tenure to current mining rights holders.

Such an new Minerals Act should only permit exploration over areas where the Geological Survey (ZGS) has declared that there are no known exploitable resources and be put out for public comment for at least 30 days before being granted (in case there are exploitable resources in the area that the ZGS are unaware of). This process would be greatly facilitated if the ZGS was resourced to immediately undertake a study to categorise the whole of Zimbabwe into areas of known mineral resources (biddable areas), areas of unknown resources (non-biddable = FIFA areas) and areas of partly known resources (reserved for further work by ZGS, ZMDC or state sub-contractors). This would be greatly facilitated by the introduction of a modern Mineral Cadastre System (MCIMS: Mineral Cadastre Information Management System).
A suggested mineral rights issuance procedure, for stakeholder discussion, is presented in Figure 23. It is suggested that an exploration license be given over up to 65000Ha for 3 years followed by a possible extension by the MAB (dependent on original work-plan compliance) for a further 2 years over half the area and a further extension of 2 years over half the remaining area (25% of the original area). New work-plans would have to be approved by the MAB for each extension (Figure 23). If economic conditions justify a postponement of mining, an Exploration Extension License could be granted by the MAB for up to 2 years, if the weighted value (price) of the basket of minerals to be produced (as per the mining plan) falls more than 30% below the average value of the basket for the previous 36 months. Accordingly, the remaining (25%) exploration ground could be encumbered (sterilised) for a maximum of 9 years (3+2+2+2).
An Exploration License would be transferable with the authorisation of the MAB, but should attract a 50% Capital Gains Tax (CGT) on the difference between sale price and all legitimate exploration expenditures undertaken to date of transfer, to discourage mineral property speculators (“flippers”) and to share in the capital gains on a state asset. A change in the holding company’s ownership of >50% should be considered a transfer of the License and accordingly require MAB approval.

A Mining Lease would be issued against a CRIRSCO 58 compliant resources confirmation, a bankable investment/mining plan and a compliant environmental plan, by the Minister on advice from the MAB. The tenure would be as per the mining plan (based on the confirmed resources) for up to 25 years. Discovery of further confirmed resources could permit a lease extension against a new mining plan approved by the MAB.

2.1.2 ARTISANAL AND SMALL-SCALE MINING (ASM)

ASM should have its own less onerous regime to encourage indigenous entrepreneurs and should accordingly be restricted to Zimbabwean citizens. There are numerous definitions of ASM using, inter alia, volume of ore or mineral/metal production, value of sales, size of concession, degree of mechanisation or capital employed, number of workers, depth of operations, etc. (Table 15) It is proposed here that a combination of the volume of ore treated and the size of the concession be used in combination to qualify for ASM rights.

58 CRIRSCO: Committee for Mineral Reserves International Reporting Standards (e.g. SAMREC, JORC)
A reasonable figure for the volume of ore treated would appear to be around 15kt/month (180,000t/an) and a mining right of up to 40,000m² (4Ha). A small scale prospecting right could remain as is in the recommended amendments to the Act, namely 1km². An ASM mining license should be convertible to a Mining Lease, if all the requisite conditions are fulfilled.

A suggested ASM mineral rights administration system is presented in Figure 24 for stakeholder review and discussion. Given that a MCIMS\(^60\) is still not in place, it would be prudent to ensure that the modalities of acquiring and maintaining an ASM prospecting and mining license are prescribed in the regulations rather than the Act.

Although an ASM license needs to be as simple as possible, so as not to create onerous entry barriers to ordinary Zimbabweans, ASM has the potential to create severe environmental damage. In this regard the concept of creating proclaimed ASM zones might be worth considering. The state could carry out a Strategic Environmental Assessment (SEA) over such zones and build the necessary mitigation and remediation measures into the ASM licenses granted in the zone. Failure to comply with the measures would lead to a forfeiture of the license after a reasonable rectification period (3 months?) and appeal procedure (MAB). The state would further

\(^60\) MCIMS: Mineral Cadastre Information Management System
carry out periodic environmental assessments over such proclaimed ASM zones and update the requisite conditions in all ASM License renewals in the zone.

The pre-existing ASM support system of extension services (DMC61, regional geologist, GML62), finance (DMC equipment hire-purchase pound), and marketing/quality (GML and MMCZ) needs to be rebuilt and reinforced. Consideration could also be given to creating an ASM Venture Capital Fund (VCF) as a PPP between the state and the Chamber of Mines (and donors, e.g. CASM grants63)

\begin{center}
\textbf{ASM support “Golden Triangle”}
\end{center}

\textit{DMC: District Mining Commissioner; GML: Government Metallurgical Laboratory; VCF: Venture Capital Fund}

In addition, the Government Roasting Plant (GRP: Kwekwe) used to treat refractory gold ores for ASM

Given the historical role of women in ASM, support systems to facilitate the entry of female entrepreneurs into this sector should be configured, such as a special window

61 DMC: District Mining Commissioner.
62 GML: Government Metallurgical Laboratory
63 World Bank “Communities and Small-scale Mining” grant system
http://go.worldbank.org/6OCES521R0
in the ASM VCF and targeted short training courses under the Zimbabwe School of Mines in Bulawayo.

2.1.3 TRANSITIONING ARRANGEMENTS

The new Act would have to have a section on transitioning from current rights to the new rights whereby new licences/leases compliant with the new Act (prospecting/exploration licences) would automatically be granted to all mineral rights holders under the old Act. For example, all holders of unworked claims could elect to be issued with either a new Prospecting or Exploration License and all holders of operational claims could elect to convert to either a new ASM License or a Mining Lease. Current holders of SMLs would convert to the new Mining Lease. Current EPO holders could likewise elect to be issued with either a new Prospecting or Exploration License.

2.1.4 MCIMS: MINERAL CADASTRE INFORMATION MANAGEMENT SYSTEM

The proposed hybrid FIFA-Tender system would be greatly facilitated by the establishment of a modern functional MCIMS, as would the attraction of investors into the Zimbabwean minerals sector. Some work was apparently done in this regard by the Canadian government about 10 years ago and more recently the World Bank funded a “Diagnostic Study on Modernisation of the Mineral Licensing System in Zimbabwe”\(^\text{64}\) which concluded that a “…deep and systematic revision of the mining law is required, and the proposed amendments should be supplemented by new Licensing Regulations, including transitional measures for the adaptation of the existing licenses to the new licensing methodology”\(^\text{65}\). The study proposed a budget of $1.2 million to implement the MCIMS. However, the proposal that there be a conversion to a grid based system could add significantly to legal/administrative challenges (to convert all existing rights to a grid system and deal with resulting overlaps etc.). Given the availability of low cost and accurate GPS\(^\text{66}\) instruments, a system based on polygons

\(^{64}\) Enrique Ortega Girones, “Diagnostic Study on Modernisation of the Mineral Licensing System in Zimbabwe”, World Bank, 2010

\(^{65}\) Op cit, p 7

\(^{66}\) GPS: Global Positioning System
that preserved the current shapes may be a better option. In addition, the $150k budgeted for Geodetic network review, is not absolutely essential. Consequently it is recommended that a competent MCIMS consultant be engaged to rapidly review the study and prepare a Terms of Reference, with a reduced scope, for a tender to establish a functioning MCIMS at the ZGS.

A basic system could cost about half of the projected budget (i.e. around $600k). Given the importance of establishing a functional MCIMS, to deal both with the backlog and future mineral rights administration, priority should be given to securing the requisite funding from the Fiscus (Ministry of Finance) as well as from donors and the Chamber of Mines. Both the state and the private sector would benefit immensely from a functioning MCIMS.

2.1.5 SUMMARY OF MINERALS MANAGEMENT PROPOSALS

1. Streamline (simplify) MMA to cater for exploration licenses and ASM prospecting licences, ASM leases and Mining Leases on a use-it-lose-it principle. Shift the detailed procedures and modalities to attendant MMA Regulations;

2. Amend the MMA to cater for a hybrid FIFA (claims) and public tender system (“known” and “unknown” mineral resource terrains);

3. Amend MMA to cover back/forward linkages VA (%) milestones (e.g. at 5, 10, 15, 20y) and the corporate minimum spend on knowledge formation (HRD/R&D) of ≥5% of payroll;

4. Build a mineral deposit public tender (auction) capacity in the Ministry of Mines and ZMDC;

5. Urgently locate funds to establish a functional MCIMS (national mineral cadastre);

6. Rebuild the ASM support “golden triangle” (finance, marketing and technical support);

8. Reconfigure ZGS as a state agency with the ability to re-attract requisite professionals;

9. Resource ZGS to recommence systematic geo-mapping and to categorise the country into known, unknown and partly known mineral resource zones;

10. Capacitate ZMDC/ZGS to develop mineral targets for public tender,
2.2 THE CURRENT CRISIS AND THE UNDERLYING COMMODITIES BOOM

Any strategy utilising a resource endowment clearly requires a degree of comfort that resources demand will be sustained and that prices will not suddenly collapse as happened in the 1980s and 1990s and in the second half of 2008.

From 2002 to 2008, many developing countries displayed strong growth after several decades of stagnation due to the recent commodities boom, which was provoked by robust demand from China and, to a lesser extent, other emerging economies such as Brazil, Russia, India and Vietnam. Many developing countries have significant potential for commodities production, especially minerals, and consequently foreign direct investment (FDI) into the majority world has, according to the UNCTAD World Investment Report (WIR), displayed a marked upturn since 2002/3, mainly into the mineral resources and telecommunications sectors (Figure 25).

(Source: UNCTAD 2011)\(^{67}\)

Figure 25: FDI inflows, global and by group of economies, 1995-2010 (billions USD)

The commodities boom faltered during the second half of 2008 due to the global recession caused by the US sub-prime debt crisis, but most commodity prices have recovered to the 2007/8 levels (Figure 26) and foreign direct investment is reviving.

\(^{67}\) http://unctad.org/en/docs/webdiaeia20111_en.pdf
Nevertheless, the two seminal questions remain: when will the current global US toxic assets and Euro debt recession abate; and how long will the underlying demand last? Or will it peter out like so many earlier commodity booms?

The underlying driver of mineral demand is the metals intensity of global gross domestic product (GDP) growth. Figure 27 below displays the global steel intensity (kg steel per capita), which is a good proxy for metals intensity, against world real GDP per capita.
2.2.1 PHASES OF GLOBAL STEEL INTENSITY OF GDP

The global steel intensity of GDP shows three distinct phases since the Second World War:

Phase 1 (1950 to ~1970): high intensity – Post-Second World War minority world (first world) reconstruction and increasing buying power within the minority world, resulting in strong minerals demand and prices and widespread move to greater state control (nationalisation) of resources. Negligible impact on the majority world (third world) industrialization.

Phase 2 (1970 to 2000): low intensity – minority world infrastructure installed, move to services (only Asian tigers in high-intensity phase, but too small to impact on global trend). This resulted in over-supply and low prices for most minerals. Stagnation and political instability in resource exporting states (majority world). Widespread privatization of resources and return to colonial “free mining” regimes, often dictated by Bretton Woods Institutions (SAPs) under minority world “Washington Consensus” ideology. This growth gap reflected a failure of continuous global growth due mainly to minority world hegemony over international trade regimes and widespread use of subsidies.
Phase 3 (2000 to present): High intensity (higher rate than Phase 1) as the majority world takes off (Brazil, Russia, India, China – BRIC countries) and trade rules are increasingly revised, reflecting a partial loss of minority world hegemony over global trade systems. Period of high demand and prices and a return of “resources nationalism”, but temporarily stalled due to the extraneous US toxic debt Euro-zone crises, but by 2010 demand was already showing signs of recovery through stimulus packages and by 2011 most commodity prices had regained pre-crisis levels.

Global metal intensity would have been on a continuously increasing trend if global growth had been diffused to more of the world’s people in the 1980s and 1990s. Instead, diffusion was only to the Asian tigers with a population of less than 80 million, resulting in only a minor impact on global minerals demand. The diffusion of global growth (and intensity) finally only occurred twenty years later (in BRICs), but it was temporarily stalled due to the US toxic debt crisis plunging the world into recession. However, demand appears to be recovering despite the Eurozone debt crisis.

As is apparent from Phase 1 of intensity, sustained by minority world growth for any one country, the intensity tends to fall off once the basic national infrastructure is in place and most domestic markets have been developed and penetrated. Growth from then on is mainly in services accompanied by a falling proportion of employment in manufacturing, as evidenced by almost all mature minority world economies.
Figure 28: Steel intensity per capita.

The country steel intensity per capita data appears to indicate that, at around $16k-$20k/capita, the metals intensity of GDP growth falls off, no matter when the initial metals consuming ‘lift-off’ phase occurred (Figure 28). Given that China is only at about one-third up this high-intensity phase, that India is at about a third that of China and given that they have a combined population approaching three times that of the minority world, it would then appear that the current global high metals intensity phase might continue at least as long as Phase 1 (see Figure 27) or roughly 30 years (1950 to 1980). This assumption excludes growing intensity from other emerging economies, such as Brazil, Vietnam and Indonesia, which if included could make this a 30–50 year high-intensity phase.

In concluding this section, it appears that, despite the recent commodities slump, the underlying boom could be an unprecedented long ‘super-cycle’, provided that China and India keep up their robust economic growth, which should underpin rising metals intensity before growth is driven by services and technology (lower metals intensity) and finally, economic stabilisation (Figure 29). This then leaves us with the fundamental question of how can the current commodities-stimulated high prices be transformed into sustainable growth, industrialisation and development in Zimbabwe?

2.2.2 A RESOURCE-BASED STRATEGY & THE “RESOURCE CURSE”

The “resource curse” is a much debated and studied phenomenon, but it is clear that a resource endowment is not always a curse and, if well-managed, can be a “blessing” as evidenced by strong sustained growth in several resource economies (or erstwhile resource economies), such as Sweden, the USA, Norway, Malaysia, Finland, Australia, Canada, New Zealand (Aetoroa), Botswana, etc. A comprehensive paper
(Van der Ploeg, 200769,70) adequately surveys the literature in this regard and Collier and Goderis’ (Collier & Goderis, 200771) extensive and illuminating analysis of a large sample of countries (130), using a “panel cointegration methodology” refines the impact of the “resource curse” with the following findings:

Empirical evidence suggests that commodity booms have positive short-term impacts on growth, but negative long-term impacts on developing countries;

These adverse long-term impacts are only experienced by exporters of “high rent” mineral (non-agricultural) commodities;

The key determinant as to whether a mineral boom will be a “blessing” or a curse appears to be the level of governance, particularly the existence of “sufficiently good institutions” (Collier & Goderis, 2007);

The main “channels” of the curse are:

- High public and private consumption;
- Low/inefficient investment;
- Overvalued (strong) currency (“Dutch Disease”).

However, what is significant is that all of these “channels” can be neutralised or ameliorated through appropriate policies and strategies and the resource “curse” can be turned into a “blessing” through targeted deployment of the resource rents and opportunities. In this regard Omano Edigheji also notes that “...what sets developmental states apart from mineral-rich countries is primarily the nature of institutions and consequently state capacity...”72, which is consistent with Colliers & Goderis’ findings. A common method of ameliorating the three “channels” is to capture the resource rents and to keep them offshore in a SWF73. The SWF could be used to

69 “Challenges And Opportunities For Resource Rich Economies”, Frederick van der Ploeg, European University Institute, Florence, OXcarre, Oxford University, University of Amsterdam, Revised 31 May 2007

70 "Can the Natural Resource Curse Be Turned Into a Blessing? The Role of Trade Policies and Institutions", Rabah Arezki and Frederick van der Ploeg, CEPR Discussion Paper No 6225, 2007

71 “Commodity Prices, Growth, and the Natural Resource Curse: Reconciling a Conundrum”, Paul Collier and Benedikt Goderis, University of Oxford, August, 2007

72 Edigheji, Omano, op cit, p12.

73 SWF: Sovereign Wealth Fund
fund long-term physical and human (knowledge) infrastructure projects (i.e. “drip-feed” back into the economy) to enhance future economic competitiveness (inter-generational equity). This thesis explores some strategies, particularly for Zimbabwe, to overcome or dilute elements of the “resource curse” and to build appropriate institutions.

2.3 ZIMBABWE: TOWARDS A SUSTAINABLE RESOURCE-BASED DEVELOPMENT STRATEGY

Zimbabwe’s rich and diverse resource base, combined with the strong global resources demand, could underpin a viable resource-based re-industrialisation and industrialisation strategy that goes beyond supplying raw materials to the world economy. This could be achieved by utilising its extensive resource developmental opportunities to establish the requisite economic infrastructure across the country and into the region (particularly access to the coast) and to create the crucial resource sector linkages into the local, regional and sub-continental economies.

This ‘deepening’ of the resources sector though up-, down- and side-stream (infrastructure) industrial linkages could form core industrialisation nuclei for the economy and could, over time, diversify with increasing human resource development, technology development and skills formation, through the lateral migration of these resource-dependent industrial clusters into resource-independent industrial activities.
In addition to the capture and judicious deployment of resource rents, Zimbabwe’s mineral resources endowment gives it a comparative advantage in establishing resource linkage industrial clusters (Figure 30) through the following:

1) The immediate market offered by the local and regional resource industries’ demand for inputs such as plant, equipment, machinery, consumables and services. This market can be relatively large for specialised resource industries’ demand, ameliorating economies of scale constraints (for example, the region constitutes three-quarters of the global platinum group metals mining and processing inputs market);

2) A potential technological advantage through close proximity to the resource industries’ demand for innovation, adaptation and problem solving (these activities often currently take place offshore in the minority world);

3) A feedstock price advantage for downstream resource processing industries, particularly mineral processing (smelting, refining, alloying and fabrication); and

4) Opportunities to develop the supplier industries for the extensive resource infrastructure requirements (Figure 31).

<table>
<thead>
<tr>
<th>Resource and resource-based inputs markets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mineral Exploration (equipment & services)</td>
</tr>
<tr>
<td>Mining (capital goods, consumables, services)</td>
</tr>
<tr>
<td>Concentration (equipment, machinery, grinding media, etc)</td>
</tr>
</tbody>
</table>
Smelting (capital goods, consumables, services)
Refining (equipment, machinery, chemicals, etc)

Resource infrastructure inputs markets
Construction (cement, ceramics, steel, fittings)
Railways (rail, locos, rolling-stock and spares)
Highways, roads (vehicles and trailers)
Ports and airports (capital goods)
 Pipelines (gas, fuels and slurries)
 Power plants and transmission infrastructure
 Water (treatment, pumping, storage and transport)
 Telecommunications (transmission)
 Knowledge infrastructure (universities and R&D institutions)

(Source: adapted from Jourdan 2008)

Figure 31: Local resource and infrastructure markets

2.3.1 RESOURCE LINKAGES INDUSTRIAL CLUSTERS

The development of these resource sector linkages slowly builds integrated resource linkages industrial clusters where the different components reinforce one another and, from initially serving local demand, develop competencies to export goods and services to resource sectors in the region and ultimately globally.

The resource linkages industrial clusters are indirectly anchored on the comparative advantage of the resources sectors and are comprised of:

- **Upstream linkage industries**: plant, machinery, consumables (inputs), engineering services, financial services, consultancies;
- **Downstream linkage industries**: resources processing (value addition) into intermediate products, semi-manufactures, components, sub-assemblies and finished, resource-intensive products. Resource processing usually also produces co-products and by-products, which also constitute potential feedstocks for further downstream linkage industries. These resource beneficiation industries in turn create markets for further upstream industries (capital goods, consumables and services);
- **Sidestream linkages**: Power generation and supply, construction, process automation, logistics, marketing, transport infrastructure (rail, road and ports), environmental industries, human resource development and skilling entities and other resource sectors that supply inputs into the resource sector (for example,
mineral inputs such as fertiliser and conditioners into agriculture, and chemicals into mining). These in turn create new demand for upstream industries. These linkages are illustrated for the Finnish forestry cluster in Figure 32 below, but similar sector clusters can be developed for Zimbabwe’s mineral resources natural comparative advantages.

(Source: Adapted from Ramos 1998)

Figure 32: Finland’s forestry cluster.

According to Joseph Ramos (1998), the evolution of the resource linkage industrial clusters generally goes through the following four phases (p. 112):

Phasing of Resource-based Industrial Clusters

PHASE I: Resource extraction with minimum essential local processing (for example, ore concentration, raw cacao beans, roundwood and cotton lint). Almost all the inputs (capital goods, consumables and engineering services) are imported (except for production engineering services) in this phase;

PHASE II: Resource processing and export (for example, wood pulp, agri-processing, mineral smelting and refining) as well as initial import substitution of the lower-technology imported inputs (usually under licence for the local market) and increasing production engineering services;
PHASE III: Initial export of some goods and services established under import substitution in Phase II. The engineering services are increasingly based on local intellectual property and the resources are processed into higher value-added products (for example, fine and special papers, metal alloys, semi-manufactures, packaged agricultural products and textiles);

PHASE IV: Exports of a wide range of resource goods and services of increasing complexity and technology including design engineering services, resource plant and machinery (predominantly based on local intellectual property). Exports of resource-based products of greater variety and complexity and the migration of knowledge-intensive resource services industries, into new, resource-independent sectors.

These phases of resource industrial cluster development are in reality more diverse and complex with some activities moving faster and others slower, but overall there is an increase in product complexity and sophistication (both up- and downstream) that needs to be paralleled with the increasing production of high-level skills (engineers and scientists) and investments into research and development (R&D).

Ultimately, a natural comparative advantage (Phase I) has been transformed into a competitive advantage (Phase IV) with continuous incremental improvements in productivity and design, and the basis has been laid for the migration of hi-tech industries into new, resource-independent (either as a feedstock or market) sectors and generic diversified industrialisation.

Work by Maloney (2002) and the ANC (2012) indicates that the failure of resource-based industrialisation is generally due to a lack technological adoption (backward linkages) because of a “deficient national learning or innovative capacity, arising from low investment in human capital and scientific infrastructure”\(^{74}\). The ANC SIMS study concluded that there appeared to be no resource-based industrialisation success story that had not succeeded in dramatically raising their technical HRD (engineers & scientists) capacity and their technology development capacity (R&D), both of which are a pre-requisite for fully exploiting the resources backward and forward industrial linkages.

\(^{74}\) Maloney 2002
There have been several similar linkages studies done for the minerals sector in both South America and southern Africa. A recent study of the South African platinum group metals sector noted that the engineering, procurement, construction management (EPCM) firms are critical to optimising the initial linkages, which also impact on the potential ongoing linkages in terms of the technologies and processes selected. In addition, the Mozal (BHPB) linkages programme has indicated that the configuration of local sub-contracts is important to the success of developing local suppliers. The failure to develop downstream linkages at the Hillside aluminium smelter (Gencor, later BHPB) in Richards Bay is predominantly due to monopoly pricing of the product at an import parity price (IPP). The stipulation of competitive pricing of all resource products is seminal to any successful forward linkages (downstream) strategy.

Nevertheless, the development of regional resources inputs industrial clusters is also critically constrained by the small Zimbabwean national market. Even the Southern African Customs Union (SACU) market (Africa’s largest regional market) generally lacks the requisite demand for many world-scale viable capital goods plants. The accession of Zimbabwe into the SACU and the establishment of regional (SADC) common markets would greatly increase the possibility of a successful resource-based development strategy. Other resource-based industrialisation success stories either had larger domestic markets (US, Brazil) or had access to larger markets (the Nordics: access USSR and EU).

A schematic phasing of a resource-based development strategy is presented in Figure 33: Schematic resource-based industrialisation phasing, below, which displays the decreasing importance of resource exploitation as the resource linkages are developed.
As the linkages are established more value is added through beneficiation than mining (I), resource infrastructure is densified to serve other areas (II), labour becomes increasingly skilled and mining more capital intensive (III), government revenues diversify from resources to other sectors (IV), imported mining inputs are increasingly produced locally (V), mineral technologies are locally developed or adapted rather than imported (VI) and resource exploitation is governed by general laws and institutions rather than project specific contracts (VII).

A Zimbabwe resource-based development strategy would typically go through similar phases of industrialisation, with decreasing importance of its resources comparative advantage and an increasing relative importance of a skills-based competitive advantage (Figure 33).

Almost all African economies can be positioned on this continuum, though most would still be in Phases I or II, while Zimbabwe would probably be positioned somewhere in
Phase II (though slipping back). In summary, the key elements of a resource-based development strategy are:

1) The realisation of a resource comparative advantage by overcoming infrastructure constraints through the establishment of infrastructure networks. This has largely been achieved in Zimbabwe (in need of rehabilitation) though major new infrastructure is needed for bulk mineral exports such as iron ore and coal (see Case Study: The Putative Mwanesi Development Corridor (SDI)).

2) The ‘densification’ of the resource-based infrastructure through the establishment of ancillary and feeder infrastructure to enlarge the resources corridor catchments and beneficiary sectors (agriculture, forestry and tourism).

3) The deepening of the mineral sector linkages into the domestic and regional economy through beneficiation of these resources and creating supplier and service industries around the minerals sector and developing them into complex resource linkages industrial clusters (up-, side- and downstream industries). However this is critically dependent on:

4) Dramatically increasing the national quality of human capital and technology development through concerted long-term investment in technical HRD (engineers, scientists, technicians) and R&D (innovation);

5) Ensuring that value addition and the development of the minerals sector is part of the national innovation and industrialisation strategy

6) The capture of resource rents through resource rent taxes and the re-investment of resource rents into human resource development, skills and R&D for technology development to capitalise on the resource linkages opportunities, as well as into long-term infrastructure, for the development of mature resource industrial clusters and, ultimately, a competitive advantage, independent of resource endowments.

A comprehensive Zimbabwean resource-based strategy should develop the labour-intensive resources upstream sectors as well as going further downstream, beyond capital-intensive intermediate goods, into labour-intensive fabrication, which is often stunted by the widespread practice of monopoly pricing of intermediate industrial feedstocks.

2.4 OPTIMISING THE RESOURCE LINKAGES TO MAXIMISE THE DEVELOPMENT IMPACT
African Mining Vision: In 2009 the African Union (AU) Heads of State adopted the “The African Mining Vision” that contains important strategies for the maximisation of the impact of mineral resources on growth and development. This Vision aims to achieve a “knowledge-driven African mining sector that catalyses and contributes to the broad-based growth & development of, and is fully integrated into, a single African market through:

- Down-stream linkages into mineral beneficiation and manufacturing;
- Up-stream linkages into mining capital goods, consumables & services industries;
- Side-stream linkages into infrastructure (power, logistics; communications, water) and skills & technology development (HRD and R&D);
- Mutually beneficial partnerships between the state, the private sector, civil society, local communities and other stakeholders; and
- A comprehensive knowledge of its mineral endowment”

The Africa Mining Vision correctly emphasises the need for mining to be integrated into the rest of the economy through developing the crucial mineral linkages sectors and investing in geo-survey.

The key element to a strategy that uses natural resources to catalyse growth and development appears to be, from looking at successful resource-based industrialisation, the maximisation of the concomitant opportunities offered by a natural resources endowment, particularly the ‘deepening’ of the resources sector through optimising economic linkages into the local economy.

2.4.1 FISCAL LINKAGES: RESOURCE RENTS

Resource rents (returns in excess of the expected/average return on capital) should be used to improve the basic physical and knowledge infrastructure of the nation. Generally, the resource rents are not shared with the resource owner (the state/people), except, partially, through the Additional Profits Tax (APT) in the Special Mining Leases (SML) and the implementation of a resource rent tax (APT) should be considered for all mining operations, possibly to be kept offshore to ameliorate

currency appreciation and fiscal shocks, and which could be drip-fed back into long-term (ten to twenty year) knowledge and physical infrastructure.

2.4.2 SPATIAL LINKAGES (INFRASTRUCTURE)

The FAO (UN Food and Agriculture Organisation) notes that “Only 21 percent of [Africa’s] population live within 100 km of the coast or of a navigable river, against 89 percent in high-income countries. The proportion of the population that is landlocked is seven times higher than in rich countries. Landlocked countries in Africa have average freight costs almost three times higher than in high-income countries.”

Furthermore, over two centuries ago, Adam Smith observed that “There are in Africa none of those great inlets, such as the Baltic and Adriatic seas in Europe, the Mediterranean and Euxine seas in both Europe and Asia, and the gulphs of Arabia, Persia, India, Bengal, and Siam in Asia, to carry maritime commerce into the interior parts of that great continent: and the great rivers of Africa are at too great a distance from one another to give occasion to any considerable inland navigation.”

Zimbabwe’s land-locked location clearly leaves it with a severe logistics constraint in terms of trading in the global markets, which will constrain future growth, unless overcome.

The high-rent resources infrastructure (mainly minerals) could be used to open up other lower rent, resource potential (such as agriculture, forestry and tourism), as per the spatial development initiatives (SDI) methodology in order to access zones of economic potential with lower returns that cannot afford their own requisite infrastructure. All resource concessions must include third party access at non-discriminatory user-tariffs to all the resources infrastructure (transport, power, water and tele-communications), in order to catalyse the higher development impact resource infrastructure ‘hitch-hikers’ (such as agriculture), which in general have a

much higher socio-economic propulsive impact. This condition needs to be configured into all resource contracts (concessions) for all resource infrastructure.

Resource infrastructure generally relies on state assets (servitudes) or rights (licences) and consequently constitutes a potential lever for encouraging the resource and the infrastructure concessionaires to optimise the local mineral and infrastructure linkages.

2.4.3 DOWNSTREAM VALUE ADDITION [FORWARD LINKAGES]

The locational advantage of producing crude resources should be used to establish resource processing industries that could then provide the feedstocks for manufacturing and industrialisation. In this regard, the resource contracts or licences need to provide incentives or disincentives for mineral resources downstream beneficiation. However, the widespread practice of monopoly pricing of beneficiated minerals/metals could negate this advantage for the manufacturing industry (especially steels and polymers). In addition, the first steps of beneficiation are often energy intensive (smelting), which is currently constrained by Zimbabwe’s power shortages.

Consideration should be given to much greater intra-regional power trade (through, for example, the regional power pool: SAPP\(^\text{78}\)), which could be based on potential low cost and sustainable hydro-power from the Congo, Zambezi and other rivers between the tropics. However, in many cases, mining companies in Africa have encouraged beneficiation offshore. An example would be Anglo American’s divestment from its main platinum group metals downstream beneficiator and technology developer, Johnson Matthey Plc in the 1990s (when it was the major shareholder, at more than 40%), after investing heavily in it, especially in technology development, over the previous 40 years. This was probably due to its increasing focus on ‘core competence’ (mining) in preparation for its exit and London listing. This appears to indicate that the South African decision to allow Anglo to relist abroad was possibly ill-advised and that the ‘unfettered’ movement abroad of domestic capital should be curtailed.

2.4.4 UPSTREAM VALUE ADDITION [BACKWARD LINKAGES]

The resources sector market should be used to develop the resource supply/inputs sector (for example, capital goods, consumables and services). This often offers a relatively large market for specific inputs for particular resource exploitation. Zimbabwe used to boast a substantial mineral inputs sector which contracted during the currency crisis, but is slowly growing again due to the resuscitation of the mining sector. However, it will need strategic interventions to get back to and surpass its former capacity, especially in attracting back skills that were lost during the crisis.

Much of Zimbabwe’s mineral capital goods are imported and of the few capital goods companies that it had, several have shut down or contracted over the last decade, in part due to the disinvestment of the old southern African mining houses (e.g. Anglo American and Lonrho), which used to invest in a plethora of up- and downstream industries.

Local content (local value-added) milestones need to be built into the resource contracts or licences. In a Organization for Economic Cooperation and Development (OECD) Development Centre policy brief, Gøril Havro and Javier Santiso79 point out that both Norway and Chile experienced:

“…direct efforts to diversify their economy and to support industries associated with the natural-resource sector – such as engineering and supply – as well as non-resource sectors. Norwegian policies in the 1970s were markedly interventionist in this regard . . . The legal framework emphasised local content until 1990, to develop the infant petroleum supply industry. Norway also pushed for state participation in the same areas, in spite of reluctance on the part of many of the international companies.”

Havro and Santiso further contend that:

“…local-content requirements could potentially have beneficial effects as well, as seen in Norway, since they would contribute to developing domestic economic activity rather than relying on rents, while at the same time increasing human capital through learning-by-doing and technological spillovers. However, there is a need for good cooperation with the foreign companies to ensure that such requirements are not commercially unviable, and at the same time to ensure that they have a real learning

79 Gøril Havro and Javier Santiso 2008, “To Benefit From Plenty: Lessons From Chile And Norway”, OECD Development Centre, Policy Brief No. 37
impact and are not just seen as another tax payment by companies. Standardised local-content agreements worked out with experts in the field could be useful in achieving this.\footnote{Havro & Santiso 2008, op cit}

The platinum group metals seams of the Bushveld Complex in South Africa and the Great Dyke in Zimbabwe reportedly constitute the world’s largest trackless mining opportunity. However, the requisite capital goods will predominantly be supplied by imports, due to the failure to invest in the local development of trackless mining equipment, especially after the demise of the Chamber of Mines Research Organisation (COMRO) in South Africa and the Institute of Mining Research (IMR) in Zimbabwe.

\subsection*{2.4.5 KNOWLEDGE LINKAGES [HUMAN & TECHNOLOGY/PRODUCT DEVELOPMENT]}

Resources exploitation technologies generally need to adapt to local conditions (for example, climate, mineralogy and terrain) in order to provide opportunities for the development of niche technological competencies in the resources inputs sector. This sector tends to be knowledge-intensive and accordingly needs ‘priming’ through investment in human resource development and R&D. However, several studies have shown that it has the capacity to later ‘reinvent’ itself outside the resources sector to produce new products for other non-resource markets.

Future exploitation contracts or licences need to facilitate the establishment of a domestic resources R&D capacity, and the requisite human resource development. This type of capacity needs to be rebuilt and resourced across the continent, together with the mining and capital goods sectors to ensure that mineral technology opportunities do not leak away to states such as Sweden and Finland, which offer greater R&D incentives and support.

Critical to the development of technologies and products is the development of the requisite human resources with technical skills (engineers, scientists, artisans, technicians) and investing in HRD capacity development institutions (universities, colleges, training centres, etc). However, these tertiary education institutions need to
be fed from the schooling system with adequate graduates with maths and science competency (A-levels). Consequently investments need to be directed at upgrading the maths and science capacities at school level. A proportion of the resource rents garnered by the state could be reserved for investment into dramatically enhancing the production of technical cadres. No resources dependent economy has ever industrialised without concerted investments into technical HRD and R&D.

2.4.6 DEVELOPING THE LINKAGES INDUSTRIES AND CLUSTERS

Zimbabwe should focus on developing its resource linkages firms by applying best practice from more industrialised states that had a similar set of endowments. In this regard Justin Lin (2010) proposes six useful steps for “growth identification and facilitation” of firms and clusters that provide several insightful measures for growing these sectors, as follows:

Step 1: Find fast growing countries with a similar endowment structure and with about 100% higher per capita income. Identify dynamically growing tradable industries that have grown well in those countries for the last 20 years.

Step 2: See if some private domestic firms are already in those industries (of which may be existing or nascent). Identify constraints to quality upgrading or further firm entry. Take action to remove constraints.

Step 3: In industries where no domestic firms are currently present, seek FDI from countries examined in step 1, or organize new firm incubation programs.

Step 4: In addition to the industries identified in step 1, the government should also pay attention to spontaneous self discovery by private enterprises and give support to scale up the successful private innovations in new industries.

Step 5: In countries with poor infrastructure and bad business environment, special economic zones or industrial parks may be used to overcome these barriers to firm entry and FDI and encourage industrial clusters.

Step 6: The government may compensate pioneer firms in the listed identified above with: Tax incentives for a limited period, Direct credits for investments, Access to foreign exchange.

In Zimbabwe’s case some “role models” might be Finland (was a resource-based economy 40 years ago – forestry and minerals – and today is an advanced industrial nation) and Brazil (although still resource-based – minerals & agriculture – it is rapidly industrialising). South Africa (slow growing) may be a good example of what not to do – its resource linkages industries and resource knowledge sectors have shrunk over the last 20 years.

The experience of other erstwhile resource economies that are today industrialised strongly indicates that the development of the resources economic linkages sectors was seminal to their success. The principal linkages sectors are discussed in the next sections.

2.5 MINERAL FISCAL LINKAGES: MAXIMISING THE DEVELOPMENT IMPACT
2.5.1 DISCUSSION

The “economics” of the minerals sector has many features specific to it, which often underpins the rationale for special instruments to capture and manage mineral rents. In general, the sector has:

- Finite assets- ultimately depleted. Left with a “hole in the ground”;
- Potential for huge rents and huge disasters;
- Volatility of commodity prices: forex and fiscal inflows:
- Impact on exchange rates (stronger/weaker currency)
- Impact on fiscus (expand then can’t contract, increase in debt, finally SAP….)
- Dominated by large TNCs: Increasing ownership concentration;
- Enclave nature of mines and processing facilities (spatial inequalities)
- Generally capital intensive (low job/capex ratio)
- Political desire for greater VA (downstream beneficiation) at any cost;
- Irregular unpredictable ‘windfall’ profits;
- Diversion of local capital into resource boom sectors;
- Asian demand stimulated mineral “supercycle”?
- Resource nationalism: greater state intervention/participation;
- Rent “diversion” by elites, discouraging development of other sectors;
- Asymmetric contract negotiation capacity between TNC and host states;
- Lack of transparency and accountability on resource contracts (licenses/leases);
- Lack of transparency and accountability on tax proceeds (EITI);
- Environmental degradation and negative impacts on local communities;
- The “Resource Curse” and Dutch Disease;
- Etc...

2.5.1.1 TAX INSTRUMENTS

A typical and broadly applicable impost which is not unique to mining is the corporate income tax. Here, the rate of tax, allowable deductions from gross income and the extent to which losses are carried forward (or even back) are the typical issues considered. As indicated above, capital allowances are a mechanism by which policy seeks to influence the pattern of expenditure in a project. The treatment of environmental expenses, particularly those for on-going environmental management, disaster mitigation and for funding mine closure requires innovative treatment in fiscal
regimes. For example, the creation of environmental funds into which companies contribute has become common in most mining regimes. Whether expenditure on community or social activities should be permitted as a deduction from gross income for the purposes of determining taxable income also becomes more of an issue with the increasing focus on CSR82. Which other costs are deductible in calculating taxable income, is a matter which has to be addressed.

The determination of revenues can also be a challenge. Virtually all economically important minerals have a published price and it is therefore relatively easy to determine the appropriate sales revenue. Even where there is no published price, it is still possible to find a reference price to be used in determining the income of the mining company. For instance, the price of aluminium is often used as a reference for determining the income of bauxite and alumina producers. Controversy can however arise over the proper valuation of by-products, depending on the ease with which they can be separated from the main value mineral.

Where advances are obtained from project sponsors or off-takers in return for commitments to supply the mineral produced, it is necessary to ensure that the valuation of the mineral produced is transparent and at an arms-length competitive price. To avoid potential problems, the development agreement should stipulate the price references (benchmarks) to be used in determining revenues.

The meagre fiscal benefits to African governments during the “Asian Boom” were limited due mainly to the overly generous mineral policy regimes in existence in most countries, resulting from the reforms of the 1980s and 1990s prescribed by the World Bank/IMF that generally failed to capture resource rents (no progressive taxes). Admittedly, this followed years of stagnation of the sector, due to the falling intensity of minerals in global growth (GDP), falling prices and profits and consequent under investment, mainly by state mining companies, provoking an over-compensation in the opposite direction (far too attractive mineral fiscal regimes). One important feature of most of these regimes is that the incidence of taxes is distributed in such a way over the mine’s life cycle that little tax is paid until the capital invested has been recovered. Accordingly, tax payments are postponed and during times of booming prices this

82 CSR: Corporate Social Responsibility
inevitably accentuates the impression of inequity. A state revenue breakdown from a typical mineral project (with a RRT) is presented in Figure 34.

![Revenue, Rent & Taxes](image)

Source: Adapted from Land 2008

Figure 34: Typical Mineral Project Economic Breakdown

Many of Africa’s mineral regimes were revised from the late 1980s onwards with a view to promoting increased foreign direct investment for exploration and mine development. Tax rates were lowered, generous allowances were introduced for exploration and capital expenditures, import tariffs and VAT/GST were reduced or zero-rated and, in a few instances, tax holidays were granted to investors in the mining sector (the “race to the bottom”). In addition, “stabilisation clauses” that dramatically curtailed the state’s ability to increase its share of boom rents, were widespread, often reinforced with external (Minority World) arbitration clauses. The framework for evaluating a country’s fiscal policy was often whether or not its regime was sufficiently “competitive”, viewed against those of other countries with similar geological prospectivity to attract investment for greenfields and brownfields investment, resulting in the so-called “race to the bottom”. The apparent failure of these generous policy regimes to result in tangible benefits to African economies has galvanized the search for new frameworks for the sector.

2.5.1.2 WHY MINERAL SECTOR SPECIFIC TAXES?

Due to scarcity of exhaustible resources (Hotelling rule) they can have high economic/resource rent potential. Accordingly they generally have their own tax instruments. However, there is a tendency to use normal (economy-wide) taxes in combination with resource specific taxes. Mineral resources are finite
(wasting asset) which is part of the rationale for the state to capture the extra rents: whilst the asset is still extant. Resource rents are excess profits over minimum rate of return which is required to justify investment, which are rarer or lower in other sectors, resulting in customised taxes for minerals.

2.5.1.3 TAXING MINERAL RESOURCE VARIABILITY

Mineral deposits display enormous variation in grade/richness resulting in huge differences in embedded economic rent which makes it difficult to design a “one-size-fits-all” tax regime. However, deposit-by-deposit tax regimes would be problematic to design and administer, due to the lack of state knowledge of the true value of the resource at the outset (asymmetric state-investor deposit knowledge, though a resource rent tax self-adjusts for deposit “richness”). In general, there appears to be increasing consensus around the use of several tax instruments, that cater for different grades/costs and prices, to capture a “fair share” of the rent. There is now also a general consensus on the need for instruments that self-adjust to deposit richness, demand (price) and risk (progressive taxes such as a resource rent tax).

2.5.1.4 HISTORIC TRENDS IN MINERAL TAXATION:

For centuries ad valorem or in kind royalties were the main instruments of mineral taxation. From WWII: combination of fiscal instruments- royalties, company profit taxes, withholding taxes, etc. became the norm. From the 1970s governments attempted to increase their share of economic rents through introduction of production-sharing contracts (particularly for HCs\(^83\)), equity participation and resource rent taxes, first in HCs and later for minerals, in some countries.

\(^{83}\) HCs: Hydrocarbons (oil & gas)
Taxes on expatriated dividends and state carried equity participation (which is sometimes in lieu of dividend taxes) are also features in many fiscal regimes. Duties on imported inputs, particularly those used during the exploration or mine development phases, tend to be limited, if imposed at all. If not properly monitored, this can prevent the development of local supply systems (where it is economically viable) and hence deny the country the benefits of enhanced local backward linkages, as well as cause revenue loss through duty-free imports “leaking” into the general economy. In a number of jurisdictions, the local government system prescribes property rates which are payable to the local authority in the area in which land and structures are located. Depending on how these are valued and the rate of tax, these could yield significant revenue for the local authority from the assets of large-scale mining operations.

2.5.1.5 MINERALS CORPORATE/COMPANY TAX (CIT)

Most states apply a standard national corporate rate in the range of 20% to 30% of profits (Zimbabwe 25%). This has the advantage of a single administration and collection system (capacity). However, occasionally a deposit specific CIT is negotiated (for some large projects), but these exceptions to the national system are cumbersome to administer and maintain (each change requires a legislative amendment).

Dividend withholding taxes on foreign shareholders are common (10-15%), to encourage re-investment in the country. Brazil also has an escalated withholding tax (25%) on companies domiciled in tax havens.
Special capital allowances for capital intensive projects (mostly 100% expensing for exploration and development) are also widespread, to attract investment into large projects. Deductions for contributions to mine rehabilitation trust funds (closure funds) are increasingly allowed.

2.5.1.6 TAX DILUTION: TRANSFER PRICING (OVER- AND UNDER-INVOICING)

TNCs are dominant in minerals and their multi-state operations enable them to exploit tax rate differentials, by deflating profits in higher-tax jurisdictions and declaring profits in lower-tax jurisdictions by:

- Sale of minerals below market prices to affiliates in low-tax jurisdictions. Many minerals do not have terminal markets (metal exchanges) especially ores and concentrates, which are difficult for the state to value: A possible remedy is to stipulate that a portion (10%) is sold by local open tender, to get a market price indicator;

- Complex price hedging mechanism between related parties: A possible remedy is to limit hedging to a max portion of production, and/or insist on open tender for the hedging instrument;

- Debt finance provided by related parties at above-market interest rates: A possible remedy is to limit debt interest rate to a function of a recognised international corporate rate (e.g. MOODCAA 84 plus X%?) and to limit allowable debt ratios (gearing);

- Related party excessive management fees, technical services, or HQ costs. A possible remedy is to cap HQ (headquarters) costs at a percentage of costs;

- High leasing fees for capital goods and machinery from related parties: A possible remedy is to insist on open tender of leasing;

- General: African states should seek assistance from OECD tax authorities – they have the same problem! Introduce OECD-type anti-transfer pricing rules (trade with associated or related parties) and ring-fencing provisions.

84 MOODCAA: Moody’s Commercial AAA
While transfer pricing of production has attracted considerable attention, there is a strong possibility that transfer pricing of inputs and equipment constitutes a more important problem for governments and one less easily handled. Prices are often less transparent and tax evasion may take place through the use of non-arm’s length suppliers based in tax havens. Debt service to institutions linked to the investor can cause similar problems. In this connexion, it should be noted that the G20, the OECD and the EU are all making efforts to prevent or limit the use of tax havens. These initiatives need to be tapped into.

2.5.1.7 PROGRESSIVE CORPORATE INCOME TAX (CIT)

Some states have progressive CIT to cater for deposit variability and price cyclicity (tax on profitability rather than profit - e.g., SA gold mining formula tax and the Additional Profits Tax in Zimbabwe), to attempt to capture resource rents. There are various methods of capturing these “resource rents” such as deposit specific graduated or stepped CIT rate linked to a higher unit price of the commodity, or production volume or sales turnover or profit-to-sales ratio. However, a stepped rate structure is not an accurate proxy for varying rates of return and could lead to distortions on step edges (under-reporting of income) and the monitoring is complex.

The South African gold mining tax formula with built-in progressivity, linked to level of profitability of gold mine (marginal mine taxed at 0%), increases as the return on turnover increases:

\[y = a - (ab/x), \]

where:

- ‘y’ = tax rate to be determined (sliding scale taxing higher profits at high rates)
- ‘a’ = marginal tax rate
‘b’ = portion of tax-free revenue
‘x’ = ratio of taxable mining income to total income

However, return on revenue is a poor proxy for return on investment. A Resource Rent Tax (RRT), like the Additional Profits Tax (APT) would more accurately target resource rents (return on investment). Progressive taxes encourage mining at average grade (disincentivises high-grading) and therefore tend to maximise ore extraction.

2.5.1.8 RESOURCE RENT TAX (RRT)

David Ricardo proposed that Economic Rent is a surplus of individual investors’ paper profit (which has its value in control over resources rather than directly in the resources themselves) over societal gain (Figure 35). As such, it does not represent any gain but rather an unearned transfer of wealth. Accordingly it is argued that there is a need for a Resource Rent Tax (RRT) on mineral exploitation. An RRT usually includes the following:

- It triggers in after a threshold real rate-of-return (RoR) on investment has been achieved by the investment/project.
- The hurdle rate (threshold) approximates the “expected” (average) rate of return for the jurisdiction. Best linked to the state long-bond rate (+7%?) to self-adjust to country risk.
- RRT is calculated by increasing annual cash flow by threshold RoR and carrying it forward until it turns positive- when the RRT triggers for all future after tax profits (other taxes are usually allowable as costs).
- The RRT rate is generally from 20% to 50%, but there is an argument for differential rents (embodied in the asset) to be shared equally between the asset owner and the concessionaire (50/50).
However, few African states apply a RRT, due to:

- Perception that it would make them less attractive for FDI;
- Strong opposition from mining companies;
- Short-term vision of politicians (back-loaded- will only trigger in after their tenure- inter-generational)
- Perception of complexity (but no more complex than CIT)

An RRT is generally applied in on top of other taxes (CIT, royalty), as deposits with RoR below the threshold will never pay it. Several African countries have forms of a RRT (Table 16), especially for hydrocarbons (HCs).

Table 16: RRT in Africa

<table>
<thead>
<tr>
<th>Country</th>
<th>Sector</th>
<th>Year/s</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ghana</td>
<td>HCs</td>
<td>1984</td>
<td>contractual</td>
</tr>
<tr>
<td>Tanzania</td>
<td>HCs</td>
<td>1984</td>
<td>contractual</td>
</tr>
<tr>
<td>Ghana</td>
<td>Minerals</td>
<td>1985-2003</td>
<td>Law</td>
</tr>
<tr>
<td>Madagascar</td>
<td>HCs & Minerals</td>
<td>1980s</td>
<td>Law</td>
</tr>
<tr>
<td>Namibia</td>
<td>HCs</td>
<td>1993</td>
<td>Law</td>
</tr>
<tr>
<td>Zimbabwe</td>
<td>Minerals (SML)</td>
<td>1994</td>
<td>Law</td>
</tr>
<tr>
<td>Angola</td>
<td>HCs</td>
<td>1990s</td>
<td>contractual</td>
</tr>
<tr>
<td>Malawi</td>
<td>Minerals</td>
<td>2006</td>
<td>Law</td>
</tr>
<tr>
<td>Liberia</td>
<td>Minerals</td>
<td>2008</td>
<td>Law</td>
</tr>
</tbody>
</table>
Resource rent tax (RRT) mechanisms, which are imposed on the profit of the project or company after deduction of a “normal” rate of return on capital, seek to implement the basic concept of rent apportionment. There seems to be some ambivalence to them within the mining investment community. This ambivalence has been dramatically illustrated by the vociferous opposition to the recent proposals for a resource rent tax (super profit tax) in Australia. For a discussion of the Australian proposals, see Garnaut 2010, particularly the relative efficacy of a RRT and a Brown Tax (the original Henry Tax Review proposal). Despite this ambivalence by mining companies, it is generally recognized that a resource rent tax has the advantage of being neutral with respect to its impact on investment. Thus, unlike other taxes, it causes no distortion of incentives. On political philosophy grounds it is also argued that Governments have the right to capture all or part of the mineral resource rents as the owners of the resources.

The basic elements addressed in such resource rent tax schemes include: (a) the threshold rate of return after which the tax should be imposed; (b) the rate of tax to be imposed; (c) whether the impost should be on each project ring fenced from others or on a group of projects by the same investor; and (d) what deductions should be allowed from income for tax purposes. Land, (2008 & 2010) provides recent discussions on resource rent taxation in the minerals industry.

It deserves to be noted that one of the most controversial elements of the Australian resource rent tax as originally proposed was the threshold rate of return. A possible way of getting around the difficulty of determining a specific rate could be to link it to the long term yield on bonds issued by the host country, since this yield can be expected to incorporate country risk. A threshold rate corresponding to this yield plus, say, 5 to 7 per cent, would appear to be equitable in almost all cases. States that do not as yet issue Treasury long-bonds, a clause could be inserted in their revenue codes and/or MDAs that states that once a long-bond is issued, the RRT threshold will be

87 MDA : Mineral Development Agreement
the rate plus 500 – 700 basis points. Until then the state concerned would have to estimate a fixed threshold (around 10% to 20% for most African states). As for the rate of the resource rent tax, there is considerable support for a 50 percent rate, although it should be noted that Papua New Guinea has applied a 75 per cent rate for many years. A RRT is one of the least distortionary of the usual mineral tax instruments, as it does not sterilise resources which high royalties could do. Marginal deposits would never breach the RRT threshold and therefore a high RRT rate would not impact on the investment decision for such a deposit.

“Resource rent taxation has a reputation for administrative complexity, which may weigh against it:

- RRT has mostly the same information and audit requirements as conventional income taxation. The main differences are:
- the project ring-fence basis for assessment (typically only relaxed for exploration expenses) but ring-fencing is not unique to RRT;
- the cumulative rather than annual income basis of assessment... this is mainly a computational issue (there may be an issue over prior year records);
- the cash flow rather than accounting basis for assessment – non-tax cash charges, like depreciation are not used … this may add to the burden of the audit function;
- Tax leakage safeguards (dealing with transfer pricing, thin capitalisation, allocation of overheads, expenditure verification) are no different from those needed for any other kind of profits taxation.
- Tax administrators would need training on conceptual underpinnings of RRT (discounted cash flow, cost of risk capital, investment returns, etc)"

2.5.1.9 MINERAL ROYALTIES

It is usually recognised that some recompense is due to the owner/country once its minerals are extracted and sold, regardless of whether or not the seller reports a profit,

88 Land, Bryan, ppt to IMF Conference on “Taxing Natural Resources” Washington 2008
though account ought to be taken of the potential adverse effects of high upfront payments on the development and operation of mining projects.

Royalties are the oldest form of mineral taxation: Usually imposed on value of mineral sales (ad valorem) or a set charge per production volume (specific). Historically royalty was in kind (volume/weight). Royalties are a factor payment or consideration for the right to deplete the national asset (similar to capital and labour input costs). However, due to local ownership claims some jurisdictions share royalty proceeds between central and local levels of government. This effectively privileges mineral rich regions.

Royalties have the advantages of being easier to administer (more difficult to subvert than profit-based taxes) and are front-loaded, giving the state much-needed immediate receipts from first production. However, they add to working costs and consequently increase economic cut-off grade of a mineral deposit (i.e. could sterilise marginal deposits/resources).

There is generally a transfer pricing problem (under invoicing) for mineral products without terminal markets (e.g. LME), which implies a need for state capacity to determine market prices. The state could insist on local open tender sales of a proportion of production, to get a market price and to facilitate local VA (value added).

Some states decrease royalties with increasing VA to encourage local beneficiation (VA). However, this is only effective if the mining company beneficiates, unless it is applied to exports, then it equates to an export tax, (below).

Royalties should be based on value at mine gate, but several states find it simpler to apply them at the port (FoB value- to determine value) – thus effectively becoming an export tax (below).

Royalties are the principal means for ensuring that the country obtains some minimum of the value of the mineral produced. These may be imposed as an amount per unit of production (unit-based); or at a rate based on the value of the mineral sold; or, less commonly, on the basis of the profits from or the profitability of the mining operation. In addition to ensuring that at least a minimum amount is paid in taxes, royalties have the advantage of being relatively easy to determine and collect, and thus pose less demand on the sophistication of the government’s tax auditors. Otto et al. (2006) provides a comprehensive account of the different forms of royalty. Royalties are generally applicable on the value of the minerals at mine-gate, to recompense the state for the loss of the resource, whether or not a profit is made. However, if royalty rates
are set too high they will sterilise marginal deposits/reserves as they are effectively a working cost.

2.5.1.10 MINERAL EXPORT TAXES

Mineral export taxes are usually applied on the FoB value of mineral exports. Used in order to:

- encourage local beneficiation (VA);
- protect strategic feedstocks for local consumption;
- raise revenue (not efficient);

Almost no African states use mineral export taxes (but used extensively by NICs: China, Russia). It could be an effective instrument to facilitate mineral value addition, *where there is a clear business case for beneficiation*. However, they are strongly opposed by OECD who fear limited access to mineral resources (curtailed in EU EPAs and EC “Raw Materials Strategy”\(^8^9\)).

An export tax could be distortionary if set too high (>5%) as it is effectively a second (export) “royalty”, adding to working costs (thus increasing the hurdle rate and consequently would sterilise deposits/reserves). It should only be applied to selective minerals, only after a feasibility study (PFS\(^9^0\)) on the next VA step has shown it to be economic viable. However, like royalties it is relatively easier to administer and collect.

2.5.1.11 OTHER INDIRECT TAXES

Import duties: These should ideally be an industrial development instrument, but in many states it is unfortunately applied as a fiscal instrument. Nevertheless, many states offer exemptions due to the capital intensity of large mineral projects. These exemptions should only be for the capex phase of the project (1 to 3y), if at all, to encourage backward linkages for the ongoing project consumables (opex).

VAT/GST: African mineral production is mostly exported (zero-rated in terms of standard destination-based VAT system). Consequently, some states have made

\(^9^0\) PFS: Pre-feasibility Study
mining project imports; VAT free, but due to weak VAT administrations (tardy refunds) this effectively disadvantages local suppliers (backward linkages) and should be avoided (mineral project imports should attract VAT/GST and import duties);

Labour Levies: For skills development, unemployment benefit, etc. They are usually applied on the value of wages (pay-roll). Although these also add to costs, there is a “normal” necessary level that responsible companies have to invest to renew/develop their skills assets in order to generate returns. This would be the minimum obligatory level, which would not impact on “responsible” companies, but would oblige companies that rely on poaching skills to contribute to the national skills pool\(^9\).

2.5.1.12 STATE EQUITY

State equity is equivalent to CIT (but maintains the national CIT rate). State equity could:

1. Secure higher slice of economic rent in times of buoyant commodity prices (in lieu of super-profit or additional profits taxes);
2. Enhance stability and prevent renegotiation of fiscal terms (but an RRT could be more effective);
3. Increase government influence on establishing mineral linkages (in lieu of effective laws/regulations?) and other national development objectives (however, state representatives on the boards of mining companies are often “captured”);

Equity can be costly for paid-up equity and carries potential conflict of interest as regulator and player (e.g. environmental and labour laws). Investors tend to prefer government’s role as regulator and tax collector, with equity less than 15%. State equity participation is realised in many forms:

- Commercially transacted paid-up equity
- Paid-up equity on concessional terms
- Carried interest- government pays for it out of production proceeds
- Tax exchanged for equity (reduced tax liability)
- Equity in exchange for state infrastructure provision
- Free equity or “free carry” (less transparent as taxes may be offset)

\(^9\) The SA Mining Charter sets the “normal” target at 5% of pay-roll.
2.5.1.13 OTHER FORMS OF MINERAL REVENUES

Some other forms of revenue from mining are:

An upfront “bullet” payment (auction, public tender), which could be costly as the state will generally get more from back-loaded instruments because it invariably has a lower discount rate than the investor;

Surface fees: Usually on area ($/Ha), which assist in limiting exploration and mining areas to economic targets and avoid the “sterilisation” (squatting) of potential mineral assets. They need to be set as a very low percentage of costs (increase the hurdle rate) in order not to sterilise potential projects (especially large marginal projects). For exploration a better instrument is an annual minimum work ($/ha) obligation.

Capital gains tax on exploration “flips”: To discourage opportunistic speculators, a capital gains tax (CGT) could be considered for exploration licenses that are “flipped” before mineral production (mining license). The tax would apply to the difference between the flip price and total allowable exploration spend to the flip date.

License fees: These are necessary to filter out opportunists, but need to be low enough to not discourage serious explorers/investors;

2.5.1.14 FISCAL STABILITY CLAUSES

As many have pointed out, it is important not only to focus on particular elements, but also on the overall tax package. In many large-scale projects in Africa, sponsors (and their lenders) have sought and obtained assurances that there would be no additions to the total tax package agreed to initially (save for minor taxes up to a specified amount). During the recent period of high prices and profits, where the agreed regimes have not earned countries commensurate shares of the higher profits generated, the pressure on governments to impose additional taxes in spite of such stabilisation clauses has proved irresistible in several instances. This reinforces the argument on the necessity to develop fiscal regimes that uphold equity during booms and busts in the mineral price cycle.

Stability clauses facilitate the raising of capital for investment in large projects. However, the clauses are often unnecessarily broad and extensive. In principle, there
should be little need for the assurance to the investor provided by stability clauses on
discrete tax instruments beyond the tenure of the initial loans.

If taxes are deferred continuously, the pressures for renegotiation grow… Hence, most
investors seek fiscal stability clauses. The perception of fiscal stability is enhanced if
tax measures are introduced that correlate tax take closely with the rate of return, such
as progressive profit taxes, such as a RRT.

Fiscal preservation clauses may initially appear attractive, but over long run prove to
be very expensive as it limits state ability to change fiscal terms in face of ‘super profits’.
There are different forms of stability clauses such as freezing rates and the tax base
definition and a guarantee of the investor share of economic rent. These could be
administratively complex if applied per project. Fiscal stability clauses should only be
used sparingly, and then only on discrete fiscal elements and only for the duration of
the initial loans (max 7 years?).

2.5.2 MINERAL TAXATION IN ZIMBAWE

The Zimbabwean tax regime is fairly complex in comparison with other states in the
region, with the exception of SA. The normal corporate tax is 25%, but there are
numerous other direct and indirect taxes as well as fees and levies. Several tax
instruments apply only to minerals, such as royalties, marketing fees (MMCZ92),
Additional Profits Tax (APT: only Special Mining Leases) and surface fees (retention
fees). See

92 MMCZ: Minerals Marketing Corporation of Zimbabwe
Table 17.
There are several taxation rules where mining companies are treated differently to companies operating in other sectors of the economy, both positively and negatively (Table 17: Zimbabwe - Taxation).

<table>
<thead>
<tr>
<th>Tax</th>
<th>Governing legislation</th>
<th>Applicable to mining operations</th>
<th>Applicable to other taxpayers operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corporate Income Tax</td>
<td>Income Tax Act</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Aids Levy</td>
<td>Income Tax Act</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>VAT</td>
<td>Value Added Tax Act</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>PAYE</td>
<td>Income Tax Act</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Capital Gains Tax</td>
<td>Capital Gains Tax Act</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Withholding Taxes</td>
<td>Income Tax Act</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Additional Profits Tax (APT)</td>
<td>Income Tax Act</td>
<td>Yes (only SMLs)</td>
<td>No</td>
</tr>
<tr>
<td>Customs Duties</td>
<td>Customs and Excise Act</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Royalties</td>
<td>Mines and Mineral Act</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Marketing Commissions (MMCZ)</td>
<td>Mineral Marketing Corporation Act</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Source: Deloitte 2011 (from COMZ)
Wits MSC

Table 18).
Table 18: Zimbabwe- Sector Taxation Comparisons

<table>
<thead>
<tr>
<th>Item</th>
<th>Normal Miners</th>
<th>SML Miners</th>
<th>Petroleum Operators</th>
<th>Farmers</th>
<th>Life Insurance</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Tax</td>
<td>25%</td>
<td>15%</td>
<td>25%</td>
<td>25%</td>
<td>25%</td>
<td>25%</td>
</tr>
<tr>
<td>Aids Levy</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Additional Tax</td>
<td>None</td>
<td>Yes- APT</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Capital Allowances</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>Some at 100% (7th Schedule) & others at SIA or W&T</td>
<td>As per others</td>
<td>Allowed equally over 4y unless SME where it is proposed to be over 3y with 50% in 1st year.</td>
</tr>
<tr>
<td>Expiry of Tax losses</td>
<td>No Expiry</td>
<td>No Expiry</td>
<td>6 Years</td>
<td>6 Years</td>
<td>6 Years</td>
<td>6 Years</td>
</tr>
<tr>
<td>Recoupment</td>
<td>Full Sales Value</td>
<td>Limited to Cost claimed</td>
<td>Limited to Cost claimed</td>
<td>No recoupment on 7th Schedule allowances</td>
<td>Limited to allowances granted</td>
<td>Limited to allowances granted</td>
</tr>
<tr>
<td>Royalties &Statutory Commission</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Export Incentives</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes – 20% CIT for >50% manufactures exports by volume.</td>
</tr>
</tbody>
</table>

Source: Deloitte 2011

The current mineral tax system is complex and is in urgent need of overhaul. The main mineral fiscal revenue instruments are surface fees (area retention fees), royalties, CIT, withholding taxes and duties. Special Mining Leases have their own tax regime with a lower CIT and royalty, but with an Additional Profits Tax (APT) that varies with the CIT rate (current rate of 41.5% on profits above a 15% return). There are only two SMLs: Zimplats and Unki, both PGM miners.
Box: Zimbabwe- Mineral Taxes

Standard (as of January 2011)

- **Ad valorem royalty**
 - Diamonds 15%
 - Platinum 10%
 - Precious stones-10%,
 - Gold 7%
 - Other Precious metals- 4%
 - Base metals and Industrial minerals - 2%
 - Coal- 1%
 - discretionary exemption
- **Corporate Income Tax (CIT)**
 - 25% flat
 - Special Initial Allowance (100% write-off of capex)
 - Deductions for royalty, interest
 - Expensing of exploration, stripping, shaft sinking
 - Unlimited loss carry forward
 - CSR payments not recognized
 - Mine closure provisions not recognized
 - Mine-by-mine ring fence (except for exploration)
 - Presumptive tax of 2% on gold sales of ASM
- **Withholding**
 - Dividends 20% (non-resident)
 - Interest 10% (non-resident)
- **VAT**
 - 15% input VAT payable but qualifies for deferment (TBC); zero-rating for exports
- **Duties**
 - Variable rates; for certain items duty exemption replaced rebate system in 2011
 - Export duty on semi-processed chrome ore of 20%
- **Other fees and levies**
 - MMCZ marketing levy of 0.875% on mineral sales other than gold
 - Area retention fees; environmental levies

Varied for Special Mining Lease (SML)

- **Contractual stabilization**
- **CIT**
 - rate of 15%
 - Exploration expensed; development depreciated 25% per year
 - Full ring fence*
- **Additional Profits Tax**
 - Negotiable – only 2 SMLs
 - 2 tier: 15% and 20% rates of return
 - Rates: vary with CIT rate – at current CIT rate first tier APT rate is 41.5%
- **Full duty exemption for 5 years**

Note: The mining tax regimes would apply to the holder of a mining interest held by virtue of the indigenization law

Source: Adapted from COMZ 2012

Royalties

Mineral Royalties have been increased several times recently and are now the highest in the region, if not the world. Royalties are a crude and destructive tax instrument because they add to costs (based on value of output) and thereby raise the cut-off grade and consequently sterilise resources and curtail mining activity. However, they do have the advantage of being less susceptible to tax evasion, particularly transfer pricing, than taxes on the surplus produced (susceptible to over-invoicing of costs). A regional comparison of royalty rates is presented in
Wits MSC

Table 19.
Table 19: Mineral Royalties - Regional Comparison

<table>
<thead>
<tr>
<th>Country</th>
<th>Range</th>
<th>Specific Royalties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zimbabwe</td>
<td>1% - 15%</td>
<td>Diamonds 15%, Platinum and Precious stones-10 %, Gold 7%, Other Precious metals- 4%, Base metals and Industrial minerals- 2%, Coal- 1%</td>
</tr>
<tr>
<td>Angola</td>
<td>2% - 5%</td>
<td>Stones and precious metals - 5% (semi-precious stones- 4%), Metallic minerals - 3%, Others minerals- 2%</td>
</tr>
<tr>
<td>Botswana</td>
<td>3% - 10%</td>
<td>Precious stones- 10%, Semi-precious -5%, Other-3%</td>
</tr>
<tr>
<td>Mozambique</td>
<td>3% - 10%</td>
<td>10% on diamonds and precious metals (Au, Ag, Pt))and precious stones, 6% on semiprecious stones; 5% on basic minerals; 3% on coal and other mining products</td>
</tr>
<tr>
<td>Namibia</td>
<td>4% - 5%</td>
<td>Precious metals - 5%, Base and rare metals - 5%, Semi-precious stones - 4%, Industrial minerals - 4%.</td>
</tr>
<tr>
<td>Tanzania</td>
<td>2%- 12.5%</td>
<td>A 3% royalty is charged on gold and all other minerals 5% on diamond and 12.5% for petroleum and gas.</td>
</tr>
<tr>
<td>Zambia</td>
<td>3%-5%</td>
<td>Precious metals and stones -5%, Base Metals – 3%</td>
</tr>
</tbody>
</table>

Source: Deloitte 2011

In addition, the Indigenisation Law of 2007 could result in a quasi tax, depending on how the 51% equity is to be financed. The composite mineral tax regime is both onerous (by both regional and international comparisons) and inefficient in terms of optimising the revenue from mining, whilst still attracting investment in mining and growing the sector.
Table 20: Effective Tax Rate and Level of Profitability

<table>
<thead>
<tr>
<th>Net Profit % (excl. royalty payments)</th>
<th>10%</th>
<th>20%</th>
<th>30%</th>
<th>40%</th>
<th>50%</th>
<th>55%</th>
<th>60%</th>
<th>65%</th>
<th>70%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revenue</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Total Costs excluding Royalty</td>
<td>(90)</td>
<td>(80)</td>
<td>(70)</td>
<td>(60)</td>
<td>(50)</td>
<td>(45)</td>
<td>(40)</td>
<td>(35)</td>
<td>(30)</td>
</tr>
<tr>
<td>Royalty</td>
<td>(7)</td>
<td>(7)</td>
<td>(7)</td>
<td>(7)</td>
<td>(7)</td>
<td>(7)</td>
<td>(7)</td>
<td>(7)</td>
<td>(7)</td>
</tr>
<tr>
<td>MMCZ</td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
</tr>
<tr>
<td>Taxable Income</td>
<td>2</td>
<td>12</td>
<td>22</td>
<td>32</td>
<td>42</td>
<td>47</td>
<td>52</td>
<td>57</td>
<td>62</td>
</tr>
<tr>
<td>Normal Tax</td>
<td>(1)</td>
<td>(3)</td>
<td>(6)</td>
<td>(8)</td>
<td>(11)</td>
<td>(12)</td>
<td>(13)</td>
<td>(14)</td>
<td>(16)</td>
</tr>
<tr>
<td>Profit After Tax (PAT)</td>
<td>2</td>
<td>9</td>
<td>17</td>
<td>24</td>
<td>32</td>
<td>35</td>
<td>39</td>
<td>43</td>
<td>47</td>
</tr>
<tr>
<td>PAT % of Revenue</td>
<td>2%</td>
<td>9%</td>
<td>17%</td>
<td>24%</td>
<td>32%</td>
<td>35%</td>
<td>39%</td>
<td>43%</td>
<td>47%</td>
</tr>
<tr>
<td>Total taxes plus royalty</td>
<td>(9)</td>
<td>(12)</td>
<td>(16)</td>
<td>(20)</td>
<td>(23)</td>
<td>(25)</td>
<td>(27)</td>
<td>(29)</td>
<td>(30)</td>
</tr>
<tr>
<td>PAT & levies</td>
<td>1</td>
<td>8</td>
<td>14</td>
<td>20</td>
<td>27</td>
<td>30</td>
<td>33</td>
<td>36</td>
<td>40</td>
</tr>
<tr>
<td>Effective Tax Rate on Profit before tax (Pbt)</td>
<td>25%</td>
<td>25%</td>
<td>25%</td>
<td>25%</td>
<td>25%</td>
<td>25%</td>
<td>25%</td>
<td>25%</td>
<td>25%</td>
</tr>
<tr>
<td>Effective Total Tax Rate on adjusted Pbt</td>
<td>86%</td>
<td>61%</td>
<td>53%</td>
<td>49%</td>
<td>46%</td>
<td>45%</td>
<td>45%</td>
<td>44%</td>
<td>43%</td>
</tr>
</tbody>
</table>

Table 20, above, appears to indicate that the current mineral taxation regime inordinately prejudices marginal or low profit miners as compared to higher profitability operations which could lead to the sterilisation of marginal deposits, with concomitant loss of employment, fiscal revenues and markets for supplier industries.

Despite the current low capacity levels and high costs of production the sector’s contribution to the fiscal revenue is fairly comparable to the sub-region. In SA, Zambia, Tanzania and Swaziland the contribution are 12.2%, 13%, 10% and 2% respectively (Figure 36).
The current mineral fiscal regime is sub-optimal because it fails to balance maximising state revenues with encouraging investment in new exploration and mining. It tends to add to costs (relatively high royalties, fees, levies) thereby sterilising resources, rather than focussing on getting an equitable share of the surplus (profit) generated. However, although taxes on surpluses (including resource rents) could yield larger revenues to the state over the longer term through a higher rent share, through (1) increased new exploration and mining investments and (2) the exploitation of more ore (minimisation of the cut-off grades), these revenues will tend to be “back-loaded” over the life of the mine: i.e. they will generally come later than taxes based on revenue or costs, due to high start-up costs (capex) for most mineral developments (capital expensing provisions) and resource rent return thresholds. Yet there is a clear national need to increase fiscal revenues from mining in the short to medium term!

Consequently there are two, apparently contradictory, state mineral fiscal objectives:

1. to maximise the returns to the state from its mineral endowment (over life of mine) as well as
2. to garner short-term income to ameliorate the current fiscal revenue crisis.

However, this conundrum could be finessed through a judicious combination of tax and hedging instruments.

An optimal mineral fiscal regime should minimise taxes that add to costs and maximise taxes on the surplus generated.

2.5.3 FISCAL PROPOSALS:

2.5.3.1 CIT
The CIT rate is within international and regional norms and the minerals sector should continue to pay at the national rate of 25%.

2.5.3.2 Royalties

Royalties are generally above global norms, sterilise resource and constrain mining activity. Consideration should be given to reducing them to a single rate of 1% to 2% of sales for all minerals and compensating the fiscus through a RRT on all minerals (below). Over the life-of-mine, the RRT will yield much higher revenues on significantly greater production (lower hurdle rate) than the current royalties' configuration.

2.5.3.3 Resource Rent Tax (RRT)

Resource Rent Taxes (such as the SML APT) are generally considered to be the least distortionary of tax instruments as they do not impact on investment decisions for average or marginal resources (they only trigger in above a threshold return set at the “expected” return). Strong global mineral demand (Asian growth) has resulted in a high global minerals intensity of GDP and much larger resource rents (scarcity rents from higher prices) and this situation is expected to continue.

The current crisis and the underlying commodities boom”, above). Zimbabwe accordingly needs to ensure that it captures an equitable share of these resource rents while they last.

A resource rent tax of 50% on all minerals should be considered that triggers at the “expected” rate of return on investment (ROI). The current SML APT is overly complicated and open to interpretation. Instead of making the rate a function of the CIT rate, a simpler methodology could be to allow all other taxes (CIT, royalties, levies, fees) as costs before applying the RRT to the remaining free cash. Withholding taxes would be still applicable on dividends declared after the payment of RRT. All legitimate investments would be carried forward at the RRT trigger rate (threshold) creating a “RRT shield” that would be drawn down annually by the free cash. Once the RRT shield has been consumed, the investment/s would have made the threshold rate of return and the RRT will trigger in. Any further investments would recreate the RRT shield and the same procedure would be followed (a generic wording of RRT legislation is attached as Appendix 5).

The RRT threshold (the expected return on investment) would vary depending on investor’s perception of the risk, particularly sovereign risk. Accordingly, a premium on
the Treasury long-bond rate could be used as this will move in tandem with the market’s perception of Zimbabwean investment risk. The Australian RRT uses the long-bond rate plus 7% which could be applied in Zimbabwe once the Treasury recommences issuing long bonds (10 year or greater). Until then the APT threshold (20%, tier 2) could be used as a provisional RRT trigger. On introduction, the RRT could be back-calculated over the 5 years previous to the imposition, which would recognise all the past investments and free cash generation (over 5 years) for determining the whether the past returns (RoI) have breached the RRT threshold. A simplified example of an RRT on a new investment of $1 billion is given in Figure 37.

![Figure 37: RRT Example for an investment of $1,000mn](image)

Given that most deposits embodying resource rents have most probably already received the threshold return, there may not in fact be a difference between the revenue from the current high royalties and revenue from the proposed RRT with a low flat royalty rate (there may be a positive immediate impact on the fiscus, even in the short-medium term). Consequently, ZIMRA should be resourced to undertake an appraisal of the likely impact and resulting revenue differential, if any. In effect, this proposal shifts the tax burden from marginal-average return deposits to high return operations and would also drop all cut-off grades (lower royalties) and stimulate investment in more new mines and the mining of more reserves from existing operations. A conceptual graph illustrating the effect of high royalties on exploitable resources is presented in Figure 38. In addition to the sterilisation of potential reserves at operating mines, it should be noted that new investment projects (mines) that fall between the two cut-off grades (Figure 38), would also be non-viable at the higher
royalty rate. Nevertheless, many states opt for high royalties because they are easier to administer and more difficult to avoid/subvert, despite their value destruction.

![Impact of Lower Royalty on Mineable Reserves](image)

Figure 38: Conceptual Impact of Royalty on Exploitable Resources

Nevertheless, given the current dire need for state revenue, if the Zimra appraisal indicates a revenue short fall in the short-term (but gain in the longer term), consideration could be given to making a portion (say, 30%) of the projected RRT (as per the company’s work-plan) an advance to the fiscus at an international average interest rate, such as the Moody’s Corporate Bond Index Rate (MOODCAAA) plus, say, 3%, in equal instalments over, say, the next 7 years (by which time all operations containing resource rents should have started contributing RRT). This is in effect hedging 30% of the projected RRT at MOODCAAA plus 3%. Alternatively the same could be done for the projected royalty over, say, 10 years, to generate royalty fiscal receipts immediately and RRT receipts later (10 years of royalties at 1-2% should yield around $200M to $400M immediately).

Bryan Land (2008) points out that the “RRT has mostly the same information and audit requirements as conventional income taxation” and that “Tax leakage safeguards (dealing with transfer pricing, thin capitalisation, allocation of overheads, expenditure verification) are no different from those needed for any other kind of profits taxation.” Nevertheless, the scope for transfer pricing is greater than that for royalties (can also over-invoice costs for RRT) and consequently ZIMRA needs to be appropriately capacitated to minimise leakages. This could be reinforced by obligating all mining operations with revenue above a threshold (say, $100mn/an) to pay for a periodic (say, every 5 years) forensic tax audit reporting to ZIMRA.
Although dollarisation has meant that sudden inflows from commodity price spikes will not result in the Dutch Disease appreciation of the local currency causing other exports to become uncompetitive, the other manifestations will still occur such as the sucking in of scarce national capital and skills into the resource boom sectors. A sudden inflow of dollars due to a resources price spike would also fuel inflation in non-tradables, particularly financial and professional services. Consequently, consideration could be given to putting RRT revenues into a SWF with three possible disbursement windows:

1) Long-term Human and Physical Infrastructure Fund: The fiscus would draw on these funds for investment into long-term physical infrastructure (road/rail, power, telecoms) projects and human resources development, particularly the production of technical cadres (engineers, scientists, technicians) with investments into maths and science capacity at primary, secondary and tertiary education levels, to build the future competitiveness of the economy (contributing to inter-generational equity).

2) Minerals Development Fund: This fund could finance the massive investment required for geological survey to acquire a better understanding of the geology and to uncover new exploration targets. It could also fund the development of targets for tender or development by the state (or sub-contractors), the development of a national minerals technology capacity in partnership with the private sector, and investments into the backward and forward mineral linkages industries in partnership with the private sector. Finally, it could also fund immediate redemption of private exploration expenditure through negotiable tax certificates, to stimulate the delineation and development of new mining operations;

3) Fiscal Stabilisation Fund: A major proportion of the RRT revenues could be accumulated into a stabilisation fund to be drawn down by the fiscus when commodity prices fall below predetermined long-term projections\(^93\), protecting the budget from revenue shocks; This fund would, over time, become a Future Fund\(^94\)

\(^93\) Similar to the functional Chilean Stabilisation Fund
\(^94\) Similar to the Norwegian “Future Fund”
(intergenerational equity) for the nation to draw on as mineral resources are depleted (finite endowment).

When (if) a local currency is re-launched the RRT SWF should be kept offshore to protect the currency and the economy from the classical Dutch Disease effects (currency appreciation).

2.5.3.4 MINERAL EXPORT TAXES

Mineral export taxes are effectively a second royalty for most minerals and accordingly should be used with great circumspection and only be used to stimulate forward linkages (beneficiation) and not as a fiscal revenue instrument. A configuration that could minimise the negative impacts (resources sterilisation) would be to stipulate in all mining leases that the company must undertake a feasibility study on the next value addition step, five years after first production. The feasibility study should be undertaken by independent world-class consultants selected from a list of four, supplied by government. If the feasibility study indicates a real rate of return greater than 10% then government would reserve the right to impose an export tax of up to 5% on all exports of the unbenefficiated product/s.

2.5.3.5 WITHHOLDING TAXES (WHT)

The current rates for withholding taxes on dividends are high for non-resident shareholders and could be reduced. However, for companies registered in tax havens, there will always be a strong incentive to transfer price in order to rather declare profits in the lower tax jurisdiction. Brazil has tackled this problem by imposing a 25% withholding tax on dividends to entities registered in “tax havens”, thereby diminishing the incentive to invest from a tax haven. Zimbabwe could explore efficacy of introducing a similar instrument (WHT 30%?). Withholding taxes for a selection of countries are presented in
Table 21.
Table 21: Withholding Taxes – Country Comparisons

<table>
<thead>
<tr>
<th>Country</th>
<th>WHT on Contracts</th>
<th>WHT on Royalties</th>
<th>WHT on interest</th>
<th>WHT on dividends</th>
<th>WHT on remittances</th>
<th>WHT on fees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zimbabwe</td>
<td>10%</td>
<td>15%</td>
<td>15%</td>
<td>15% & 20%(NR)</td>
<td>15%</td>
<td>15%</td>
</tr>
<tr>
<td>Angola</td>
<td>5.25%</td>
<td>10%</td>
<td>15%</td>
<td>10%</td>
<td>5.25% or 3.5%</td>
<td>5.25%</td>
</tr>
<tr>
<td>Australia</td>
<td>46.50%</td>
<td>0%, 30%</td>
<td>10%</td>
<td>30%</td>
<td>30%</td>
<td>N/A</td>
</tr>
<tr>
<td>Botswana</td>
<td>3%</td>
<td>15%</td>
<td>15%</td>
<td>7.50%</td>
<td>N/A</td>
<td>15%</td>
</tr>
<tr>
<td>Canada</td>
<td>N/A</td>
<td>25%</td>
<td>25%(RP)</td>
<td>25%</td>
<td>25%</td>
<td>25%</td>
</tr>
<tr>
<td>Chile</td>
<td>35%</td>
<td>30%</td>
<td>35%</td>
<td>35%</td>
<td>35%</td>
<td>35%</td>
</tr>
<tr>
<td>Ghana</td>
<td>5%</td>
<td>10%</td>
<td>8%</td>
<td>8%</td>
<td>15%</td>
<td>10%</td>
</tr>
<tr>
<td>Mozambique</td>
<td>20%</td>
<td>20%</td>
<td>20%</td>
<td>20%</td>
<td>20%</td>
<td>20%</td>
</tr>
<tr>
<td>Namibia</td>
<td>N/A</td>
<td>10.50%</td>
<td>10%</td>
<td>10%</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>South Africa</td>
<td>N/A</td>
<td>12%</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Tanzania</td>
<td>2%</td>
<td>15%</td>
<td>10%</td>
<td>5% & 10%</td>
<td>N/A</td>
<td>5%</td>
</tr>
<tr>
<td>Zambia</td>
<td>15%</td>
<td>15%</td>
<td>15%</td>
<td>0%</td>
<td>15%</td>
<td>15%</td>
</tr>
</tbody>
</table>

Source: Deloitte 2012, from COMZ

2.5.3.6 RETENTION FEES

Retention fees also add to costs (>cut-off grade) and would appear to be obsolete once all licenses/leases are time-bound (tenure) with minimum work (exploration) or production (mining) targets (minimum requirements to retain the license/lease). Consequently consideration should be given to scrapping them in the new Act.

2.5.3.7 HRD (R&D) LEVY

The Zimdef levy is currently 1% of payroll. Given the seminal importance of building technical skills to the establishment of the critical resources upstream and downstream linkages industries, consideration should be given to a Mining Lease condition of a ≥5% of pay-roll corporate spend on knowledge development (HRD and R&D), in addition to the Zimdef levy, and the creation of a dedicated Minerals Sector Knowledge Fund, in partnership with the industry. The Fund could also finance the development of mineral technologies (R&D) together with the private sector, which, from international experience, are critical to using the mineral industrial linkages sectors (back/forward) to catalyse industrialisation. Current expenditure by mining companies on local HRD and R&D could be funded by the putative Knowledge Fund, meaning that responsible companies that are already spending around 5% of pay-roll on local skilling and technology would not be impacted.

2.5.3.8 MARKETING LEVY
The current MMCZ marketing levy of 0.875% should be reviewed to ensure that it is cost reflective using international mineral trading commissions as benchmarks. Gold sales to the Reserve Bank should be reintroduced through resolving the outstanding debt issues, and the state gold refinery (Fidelity) should be reactivated.

2.5.3.9 TRANSFER PRICING

Mining companies generally have more scope to transfer price because their products are mainly exported and often a large proportion of their inputs are imported. This is more the case for foreign mining companies with operations in numerous countries where it becomes extremely difficult to determine if a supplier or purchaser is a related or associated party. Foreign companies domiciled in tax havens (or lower tax jurisdictions) will always have a strong incentive to transfer price (move profits to the lower tax jurisdiction) in order to maximise returns to shareholders. In addition, they are generally much better resourced to disguise transfer pricing than the revenue authority (Zimra) is to uncover it. A schematic of the effects of transfer pricing is presented in Figure 39.

![Figure 39: Transfer Pricing - the export of profits](image)

However, this is also a challenge faced by OECD countries and in this regard Zimbabwe should seek assistance from well-resourced revenue authorities. In addition, consideration should be given to introducing a “Forensic Tax Self-Audit” under which the mining company would fund a 5-yearly audit by a reputable auditing company, selected from a list of four supplied by Zimra, and the audit would report to Zimra. The audit ToR would focus on transfer pricing (over and under invoicing) and
the generic ToR template should be agreed upon between government and the industry (COMZ) as both are ostensibly opposed to transfer pricing.

However, given the corporate costs (both external and internal) of such an obligation, it could be restricted to the larger operations with a turnover of, say, greater than $100 million. Also, given that the scope and incentive for transfer pricing is much greater for foreign companies, consideration could be given to making it applicable to them only.

2.5.3.10 INDIGENISATION AND FDI

The 51% indigenisation target under “Indigenisation and Economic Empowerment Act” of 2007 could be considered as a “quasi tax”, depending on how the equity is funded, especially if it is configured as a free-carry or as a “vendor loan” to be serviced by the future dividend streams. Reports appear to indicate that 10% will be earmarked for a community equity holding and a further 10% for an employee shareholder scheme.

The Zimbabwean government needs to decide whether or not it wants FDI in the minerals sector. There are several successful erstwhile resources-based states that reserved mineral resources development for nationals or the state at some point in their development (e.g. Finland, Sweden, China). However, the advantage of FDI is that it brings in much-needed capital, technology and skills to rapidly realise mineral potential, rather than depending on the much slower development by cash-strapped national capital. The disadvantage of FDI is that foreign investors are generally less likely to maximise the crucial economic linkages, due to their global perspective, than would be the case for national capital.
The foreign capital (FDI) - Linkages “trade-off”

In order to rapidly acquire the requisite capital, skills & technology, Africa has opted to use FDI (rather than mainly relying on domestic capital). However, this could compromise the seminal mineral linkages:

1) Backward linkages: TNCs often have global purchasing strategies which are less likely to develop local suppliers;
2) Forward linkages: TNCs tend to optimise their global processing facilities which can deny local downstream opportunities;
3) Knowledge linkages: TNCs locate their high level HRD and tech development (R&D) in OECD countries, thereby denying Africa the development of these critical linkages;
4) Fiscal linkages: Foreign companies have more scope & incentive to transfer price (tax evasion), especially FDI from “tax havens”;
5) In the longer term there are clearly political downsides to the extraction of finite national resources being dominated by foreign capital.

Nevertheless, these threats can all be overcome with appropriate mineral policies & strategies and the capacity to implement them!

Source: Author

Figure 40: The Minerals FDI Trade-off

Figure 40: “The Minerals FDI Trade-off”, outlines some of the key issues in the FDI versus development (linkages) question. However, it could be possible to balance the two strategies through putting in place the requisite regulatory instruments (e.g. a resource rent tax) and licence/lease conditions (e.g. back/forward value addition milestones) and building the necessary state capacity to effectively implement them: i.e. “riding the tiger”!

The 51% indigenous equity target as it stands will be a major deterrent to FDI. “Except for very lucrative known deposits, it also seems unlikely that new greenfield investments or major expansions [will] take place”\(^{95}\). It could in effect limit FDI to very rich deposits only, but it is often the less attractive deposits with complex geology/mineralogy or metallurgy that FDI might realise with its access to global skills and technology. Government appears to be split over the issue\(^ {96}\) and it is also opposed

\(^ {95}\) McMahon 2012, p18
\(^ {96}\) Supported by ZANU PF and opposed in its current form by MDC
by the union confederation (ZCTU97), who claim that it “will only enrich the elite aligned with President Robert Mugabe’s ZANU-PF party”98.

\textbf{Figure 41: Impact of indigenisation risk on mineable reserves}

Consequently, government needs to come to an agreement on whether or not it wants to use FDI to develop the nation’s mineral assets and, if it does, then it needs to develop a clear policy for governing FDI, given the drawbacks (Figure 40: The Minerals FDI Trade-off) in order to maximise the advantages (capital, skills, technology) and minimise the disadvantages (low linkages realisation). Many states have effectively used FDI, such as Norway in hydrocarbons, where they managed to make the linkages despite the use of FDI, through good governance of the oil trans-nationals.

If Zimbabwe goes the route of encouraging FDI combined with a mineral regime that ensures the realisation of the seminal linkages (“riding the tiger”) then it needs to reassess its indigenisation policy, which is currently a major constraint to attracting FDI, especially into lower return mineral projects (often more complex deposits), due to (a) the lack of certainty around the policy and (b) the ultimate quantum (51%). An indigenisation configuration that might finesse this could be to set the 10 year target at 25% and the 25 year target (i.e. on any Mining Lease renewal99) at 51%. This

97 ZCTU: Zimbabwe Congress of Trade Unions.
98 VOA 19 Oct 2010, www.voazimbabwe.com
99 Assuming Mining Leases are limited to 25 years or less (life of mine) as per the proposed amendments to the MMA.
configuration would likely only have a marginal negative impact on attracting FDI into new mining projects, but would still ultimately “indigenise” the sector.

2.5.3.11 INSTRUMENTS TO MAXIMISE THE FISCAL LINKAGES

Summary of Fiscal Proposals:

<table>
<thead>
<tr>
<th>Fiscal Instrument</th>
<th>Current</th>
<th>Proposed</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIT</td>
<td>25% (SMLs 15%)</td>
<td>25% (all)</td>
<td>RI</td>
</tr>
<tr>
<td>Royalties</td>
<td>1% - 15% (by mineral)</td>
<td>1-2% (all)</td>
<td>RI</td>
</tr>
<tr>
<td>RRT (APT)</td>
<td>0% (SMLs only-42.5%)</td>
<td>50%; ROI > 20% (all)</td>
<td>RI</td>
</tr>
<tr>
<td>RRT advance</td>
<td>0%</td>
<td>30% @ MOODCAAA plus X%?</td>
<td>RI</td>
</tr>
<tr>
<td>Mineral Export Tax</td>
<td>0%</td>
<td>1-5% (if VA shown to be viable)</td>
<td>RI</td>
</tr>
<tr>
<td>Marketing</td>
<td>0.875% (ex gold)</td>
<td>0.875% (ex gold)</td>
<td>SI</td>
</tr>
<tr>
<td>Fiscal Stabilisation Fund</td>
<td>0</td>
<td>30% of RRT (locked offshore fund)</td>
<td>SI</td>
</tr>
<tr>
<td>National HRD levy</td>
<td>1% of payroll (Zimdef)</td>
<td>1% of payroll (Zimdef)</td>
<td>SI</td>
</tr>
<tr>
<td>Minerals HRD/R&D spend</td>
<td>0%</td>
<td>5% of payroll</td>
<td>SI</td>
</tr>
<tr>
<td>Withholding Tax (foreign)</td>
<td>20%</td>
<td>15%</td>
<td>SI</td>
</tr>
<tr>
<td>Withholding Tax (local)</td>
<td>10%</td>
<td>10%</td>
<td>SI</td>
</tr>
<tr>
<td>Withholding tax – tax havens</td>
<td>20%</td>
<td>30%</td>
<td>SI</td>
</tr>
<tr>
<td>Retention Fees</td>
<td>Variable, high: $/claim</td>
<td>0</td>
<td>SI</td>
</tr>
<tr>
<td>Forensic Tax Self-Audit</td>
<td>none</td>
<td>5 yearly (Mine revenue > $200mn, financed by Mine, under ZIMRA)</td>
<td>SI</td>
</tr>
<tr>
<td>Expl. License transfer CGT</td>
<td>0%</td>
<td>50%</td>
<td>SI</td>
</tr>
<tr>
<td>Indigenisation</td>
<td>51% by year 5?</td>
<td>25% by year 10; 51% by year 25</td>
<td>SI</td>
</tr>
</tbody>
</table>

Notes: VA: Value Addition; RI: Revenue Instrument; SI: Strategy Instrument

2.6 BACKWARD LINKAGES: MAXIMISING THE DEVELOPMENT IMPACT

2.6.1 INTERNATIONAL BEST PRACTICE

Of all the mineral resources economic linkages opportunities, the backward linkages potential most probably represents the most important as well as the most difficult to realise. The mineral inputs (purchases) sector is dominated by capital goods (vehicles, rolling stock, plant, machinery, etc.), services (technological, engineering, analytical, financial, labour, etc...) and consumables (explosives, fuels, wear parts & spares,
grinding media, reagents, etc.). In general, the backward linkages are knowledge intensive (engineering) which take time to build, but they are also the most “agile” in that international experience has shown that many enterprises that started out in the resources inputs sector were able to reinvent themselves in other sectors, due to being “engineer-intensive”. Consequently, as a cluster, it is able to reduce dependence on exhaustible resources and form the nuclei of resource-independent industrialisation and job creation.

There are numerous factors impacting on the growth, competitiveness and sustainability of the upstream cluster including: “access to engineering and technical skills, access to skilled artisans, access to government incentives and finance for R&D for ‘home-grown’ firms, awareness of projects and business opportunities, lack of adequate business training and management, certification, high cost of imports, lack of resources to identify assistance programmes, lack of understanding of BEE, preferential relationships in the procurement process, and threat of inferior imports”

However, experience from states that managed to make the transition from resource-based economies to industrialised economies with full employment (e.g. the Nordic states), strongly suggests that the most important instruments that facilitate the growth of the backward linkages industries are:

- HRD- production of engineers, scientists and technicians
- R&D- technology development, both state and private
- Access to capital

100 Walker M, 2005: “Unpacking the Nature of Demand and Supply Relationships in the Mining Capital Goods and Services Cluster: The Case of PGMs”, Corporate Strategy and Industrial Development (CSID) Research Programme, School of Economics and Business Sciences, University of the Witwatersrand
In 2011 The Research Institute of the Finnish Economy (ETLA) completed a major study[101] on the broader economic impact of their minerals sector and showed a 6:1 employment generation in other upstream and downstream industries, due to their well-developed mineral linkages (Figure 42 and

\textit{Figure 42: Finland- Mineral Inputs & Outputs Sector 2007}

101 Heresniemi, H, Berg, B, Rantala, O & Suni P: Kalliosta Kullaksikummusta Klusteriksi: Suomen mineraaliklusterin vaikuttavuusselvitys, ETLA 2011
Wits MSC

Table 22). The Finnish mineral technology cluster employed as many people abroad as in Finland.
The Asian boom has given a second wind to Finnish mining, which had been in decline at earlier prices and cut-off grades. However, due to their well-developed mineral linkage industries, ETLA estimates total projected employment at more than 3 times the mining jobs, excluding foreign jobs (Table 22).

There have been several similar linkages studies done for the minerals sector in both South America and southern Africa. A recent (2009) study of the South African PGM\(^\text{102}\) sector developed the backward linkages which are generic to most minerals (Figure 43).

\(^{102}\) PGM: Platinum Group Metals
The EPCM firms are critical to optimising the initial (capex) linkages, which also impact on the potential ongoing (opex) linkages in terms of the technologies and processes selected. In addition, the Mozal (BHPB) linkages programme has indicated that the configuration of local sub-contracts is important to the success of developing local suppliers. A survey of mining supplier firms in Ekurhuleni (Gauteng, SA) indicated that the elevated price of steel (AMSA: IPP pricing) was a major constraint to the growth of the cluster, as steel represented 30%-50% of their material costs. The mooted rehab of ZISCO by ESSAR needs to provide steel to this cluster at competitive prices (EPPs). This should be built into any government contracts (leases) for critical feedstock suppliers.

The upstream cluster tends to be knowledge (engineer) intensive, especially the provision of capital goods (plant, equipment and machinery) and its after-market

104 EPCM: Engineering, Procurement, Construction Management
105 AMSA: Arcelor-Mittal South Africa
106 EPP: Export Parity Price
Figure 4. Consequently its development requires the concurrent development of technical skills (engineers, scientists, technicians).

Unlike other countries in the SADC region, Zimbabwe had a developed mining inputs manufacturing sector, before the meltdown, supplying a wide range of mining capital goods, consumables and services. This is fast coming back due the booming minerals sector, but a significant proportion must however still be imported, particularly heavy equipment (capital goods). The major constraints facing the backward linkages sector appear to be:

- Reliable power supply (especially to foundries)
- Access to capital
- Skills
- Import tariffs for feedstocks
- Availability of scrap
- Market size and access

2.6.2 ECONOMIES OF SCALE:

Although the Zimbabwean minerals sector constitutes a growing and significant large market for mineral inputs industries (backward linkages), the southern African region (SADC) has a rapidly growing minerals inputs market and significant future mineral potential. The viability of establishing supplier industries in Zimbabwe and elsewhere in the region would be substantially enhanced by (the accession of Zimbabwe some other SADC states the SACU, with a review of the current agreement to facilitate investments in new capacity (products and services), distributed equitably across the region. In this regard a special facility to promote investment in the sub-continent
should be investigated, possibly through a “regional development fund” funded through a proportion of the resource rents and donors, to invest in long-term human & physical infrastructure. A larger market could also facilitate competitive pricing of mineral-based intermediate products (and manufacturing jobs) as the small size and relative isolation (land-locked) of Zimbabwe will inevitably lead to monopoly pricing in certain sectors which could be overcome by increasing regional economic integration and competitive pricing within southern Africa (SADC).

2.6.3 INSTRUMENTS TO GROW THE UPSTREAM (BACKWARD) LINKAGES:

Mineral concession contracts (licenses/leases) should include clear milestones on local value addition in order to maximise the upstream linkages, failing which the concession/lease could be suspended and ultimately forfeited and re-concessioned. All HRD and technology development related to the exploitation of the mineral asset must be done in-country, where feasible, in order to facilitate further growth of the upstream cluster and related sectors. Investments in new upstream (supplier) industries, particularly mineral capital goods and R&D facilities, should form part of the evaluation matrix for all competitively concessioned mineral assets. In this regard the following interventions could be investigated:

1. Resolution of the power constraint through rehab of existing capacity, fast-tracking of expansion projects, new projects and imports, expand access through the SAPP;
2. Amend the MMA107 to include upstream value addition (backward linkages: local content) as a clear objective of the Act and strengthen the Minister’s power to include such conditions in the mining concession/lease. This could be done through the development of clear local content milestones (5, 10, 15 year targets) for all mining concession contracts (leases) in order to maximise local value addition. The concession contract (lease) should make it clear that failure to achieve the asset owner’s targets could result in a suspension of the contract and that, after a rectification period, the asset will be re-concessioned (auctioned against developmental criteria). Once a new MMA is in place all current licenses should be

107 MMA: Mines and Minerals Act
revisited to include such local content milestones (and the new Act should cater for this);

3. Make local content commitments a bid variable with significant weighting for all new competitively tendered mineral concessions (auctions);

4. Consideration could be given to expanding the Indigenisation Law to include competitive purchases from indigenous suppliers, based on indigenous proportion of local value added in the goods or services supplied, rather than the total value of the goods or services, to facilitate backward linkages;

5. Task the Ministries of Industry and Commerce, of Economic Planning and Investment Promotion, of Mines and Mining Development and of Science and Technology with developing and implementing comprehensive industrial sub-sectoral strategies to grow the mineral upstream sectors (capital goods, services, consumables) including the use of instruments such as import tariffs, investment incentives, innovation stimuli, market access, access to finance, competitive feedstocks, etc.

6. Task the ZMDC with developing appropriate local mining capital goods, with the private sector and technology institutions, to overcome the technological challenges of the minerals sector and to improve health and safety of workers. PPPs in the sector could be explored.

7. Establish a Minerals Sector Knowledge Fund in partnership with the industry, through an obligatory spend of 5% of payroll on local HRD and R&D, to rebuild backward linkages technology development capacity.

2.7 FORWARD LINKAGES: MAXIMISING THE DEVELOPMENT IMPACT

2.7.1 INTRODUCTION

The use of the locational advantage (CIF-FOB) of producing crude resources to establish resource processing industries (beneficiation) that could provide the feedstocks for manufacturing and industrialisation. In this regard the resource contracts/leases need to provide incentives/disincentives for mineral resources downstream beneficiation. The first steps of beneficiation are often energy intensive

108 The South African BEE supplier experience could be useful in this regard.
Wits MSC

(smelting) which is currently constrained by Zimbabwe’s power shortages. Consideration should be given to importing low cost and sustainable hydro-power (HEP) from other SADC states, which have enormous potential (estimated at 200GW). These could be ring-fenced imports, thereby placing the supply risk with the beneficiation (mining/smelting) companies, as is the case with the existing Zimplats deal with HCB (Cabora Bassa). Expansion of power access through the SAPP, specifically to support the beneficiation process should be prioritised.

Box: The Need for State Intervention on Beneficiation

One of the southern African beneficiation enigmas is manganese in South Africa where two-thirds of this high-grade resource is exported as crude ore, despite the next step (smelting to produce manganese ferro-alloys) being electricity intensive and South Africa having had low electricity prices over the last 30 years. However, the manganese export ore price was controlled by a global oligopoly of four companies which resulted in monopoly ore prices and very high returns for mining. Any downstream investments in capital intensive smelting would consequently have yielded lower returns on capital than selling ore at monopoly prices. In this way one distortion (monopoly pricing) led to another (lack of beneficiation) and this would be a good example of the necessity for state intervention to effect a correction, through, for example, by applying a correcting export tax on manganese ore exports, a resource rent tax on the excess profits or using state infrastructure tariffs.

2.7.2 MINERAL FEEDSTOCKS

Value addition of minerals (forward linkages) can be tackled from a supply-side or a demand-side methodology. The former starts with what mineral resources the nation has and then develops strategies for their beneficiation\(^{109}\), whilst the latter identifies what mineral inputs the economy needs for rapid job creation and then develops strategies for the cost-effective supply of those mineral inputs.

\(^{109}\) This generally appears to be the SA approach in “A Beneficiation Strategy For The Minerals Industry Of South Africa”, DMR 2011
Given the overriding importance of creating jobs in Zimbabwe, the latter (domestic demand driven) methodology is used here, except for minerals with potential “producer power” (where southern Africa has a large share of global resources combined with relatively low global supply and demand elasticities).

Table 23: The Principal Mineral-Based Feedstocks into the Economy - Strategic Minerals demand sectors

<table>
<thead>
<tr>
<th>Sector</th>
<th>Feedstocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturing</td>
<td>Steel, polymers (from coal, HC110s), base metals</td>
</tr>
<tr>
<td>Energy (electricity)</td>
<td>Coal, radioactive minerals, natural gas (and CBM, shale gas), limestone (emissions)</td>
</tr>
<tr>
<td>Infrastructure</td>
<td>Steel, copper, cement (from limestone, gypsum, coal)</td>
</tr>
<tr>
<td>Agriculture</td>
<td>Nitrogen (from coal, gas), phosphate, potassium, conditioners (e.g. limestone, dolomite, sulphides)</td>
</tr>
<tr>
<td>Producer power</td>
<td>Finally, where Zimbabwe has potential producer power, there could be increased downstream (beneficiation) potential: e.g. PGMs</td>
</tr>
</tbody>
</table>

The Principal Mineral-Based Feedstocks into the Economy are presented in Table 23.

2.7.2.1 MINERALS FOR MANUFACTURING

The manufacturing sector has the greatest potential for rapid job creation and the most important mineral-based inputs are steel (from iron ore and coking coal), polymers (from coal or CBM) and base metals (Cu, Zn, Pb, Ni, etc.). Globally steel and polymers are by far and away the most important feedstocks into manufacturing at about 1.4 Gtpa and 0.4 Gtpa respectively, compared to less than 0.2 Gtpa for all other metals combined.

2.7.2.1.1 STEEL

By volume the global consumption of steel alone is around 10 times that of all other metals combined! By value it is more than double all other metals combined, including precious metals (Figure 45).

110 HCs: Hydrocarbons
Figure 45: Global Materials Market

Steel: The main cost drivers of steel production are:

- Iron ore and scrap
- Reductants (coking coal, coal or gas)
- Energy (electricity)
- Capital

The table below (}
Table 24) gives costs for a typical blast furnace (BOF) steel plant using coking coal:
Table 24: Typical Costs for Steel Production, 2010

<table>
<thead>
<tr>
<th>Item</th>
<th>Factor</th>
<th>Unit</th>
<th>Unit cost $</th>
<th>Fixed Costs</th>
<th>Variable Costs</th>
<th>Total Costs</th>
<th>%</th>
<th>∑</th>
<th>Zim</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron ore</td>
<td>1.435</td>
<td>t</td>
<td>62</td>
<td>88.97</td>
<td>88.97</td>
<td>23%</td>
<td>+++</td>
<td></td>
<td>+++</td>
</tr>
<tr>
<td>ore transport</td>
<td>1.435</td>
<td>t</td>
<td>20</td>
<td>28.7</td>
<td>28.7</td>
<td>8%</td>
<td>31%</td>
<td></td>
<td>+++</td>
</tr>
<tr>
<td>Coking coal</td>
<td>0.519</td>
<td>t</td>
<td>128.5</td>
<td>66.69</td>
<td>66.69</td>
<td>18%</td>
<td>+++</td>
<td></td>
<td>+++</td>
</tr>
<tr>
<td>C transport</td>
<td>0.519</td>
<td>t</td>
<td>19.5</td>
<td>10.12</td>
<td>10.12</td>
<td>3%</td>
<td>21%</td>
<td></td>
<td>++</td>
</tr>
<tr>
<td>Steel scrap</td>
<td>0.162</td>
<td>t</td>
<td>325</td>
<td>52.65</td>
<td>52.65</td>
<td>14%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scrap delivery</td>
<td>0.162</td>
<td>t</td>
<td>5</td>
<td>0.81</td>
<td>0.81</td>
<td>0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxygen</td>
<td>80</td>
<td>m3</td>
<td>0.08</td>
<td>6.40</td>
<td>6.40</td>
<td>2%</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferroalloys</td>
<td>0.014</td>
<td>t</td>
<td>1400</td>
<td>19.60</td>
<td>19.60</td>
<td>5%</td>
<td>+++</td>
<td></td>
<td>+++</td>
</tr>
<tr>
<td>Fluxes</td>
<td>0.521</td>
<td>t</td>
<td>30</td>
<td>15.63</td>
<td>15.63</td>
<td>4%</td>
<td>9%</td>
<td></td>
<td>++</td>
</tr>
<tr>
<td>Refractories</td>
<td>0.011</td>
<td>t</td>
<td>600</td>
<td>6.60</td>
<td>6.60</td>
<td>2%</td>
<td>++</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other costs</td>
<td>1</td>
<td>t</td>
<td>13</td>
<td>3.25</td>
<td>9.75</td>
<td>3%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>By-products</td>
<td></td>
<td></td>
<td>-20.00</td>
<td>-20</td>
<td>-5%</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal energy,</td>
<td>-2.68</td>
<td>GJ</td>
<td>12.50</td>
<td>-33.50</td>
<td>-33.5</td>
<td>-9%</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electricity</td>
<td>0.122</td>
<td>MWh</td>
<td>150</td>
<td>15.56</td>
<td>18.3</td>
<td>5%</td>
<td>-4%</td>
<td></td>
<td>++</td>
</tr>
<tr>
<td>Labour</td>
<td>0.64</td>
<td>m-h</td>
<td>35</td>
<td>16.8</td>
<td>22.4</td>
<td>6%</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depreciation</td>
<td></td>
<td></td>
<td>40.00</td>
<td>40.00</td>
<td>11%</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interest</td>
<td>44.00</td>
<td></td>
<td>44.00</td>
<td>12%</td>
<td>23%</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>95.6</td>
<td></td>
<td>284.78</td>
<td>308.37</td>
<td>100%</td>
<td>++</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: derived from steelonthenet.com

The last column attempts to give Zimbabwe’s relative global position. For most items Zimbabwe is in a relatively very strong position (+++ or strong position (+)) due to having the requisite mineral resources (ore, coal, fluxes, alloys, etc.). Only on the cost of capital (interest) is Zimbabwe in a negative position, due to higher interest rates than most competitors (though an export plant would presumably be able to borrow at offshore USD rates). However, on cost of transport of products to the global market, Zimbabwe would be in a negative position, though not for the regional (SADC) market. Nevertheless, overall, this would appear to indicate that steel could be produced very competitively in Zimbabwe for the domestic and SADC markets, and possibly the world market (Table 24).

However, steel is supplied into the domestic market at high imported prices. Recognising the seminal importance of low-cost manufacturing feedstocks, several developmental states established state utilities to supply low-cost (or cost-plus) steel into their manufacturing sector and thereby underpin their international
competitiveness. Examples are POSCO in S.Korea111, Japan Iron & Steel Company112, CSC (Taiwan), Rautaruukki (Finland), NJA113-SSAB (Sweden) and Bao Steel in China.

The Mwanesi iron ore deposit could provide the resources not only for a world class steel plant, but also for a low logistics corridor to the global Market. Mining is one of the few economic activities that could have strong spatial (infrastructure) links to both its immediate surroundings and the local, provincial, national and regional economies, if appropriately configured. What is special about minerals is that they require a diverse set of infrastructure to support them (transport, power, water, etc.). An important aspect of mineral development impact arises from the fact that the spatial linkages that it creates first with its immediate surroundings and then with the broader economy, tend to be strong. Like most minerals economies, the spatial linkages that the minerals industry has created in Zimbabwe traverse the infrastructural spectrum. Through its demand for transportation, energy, water, and social infrastructure for the workers who work in the mines, the industry has had an impact on Zimbabwe’s economy that dates back from the BSAC invasion in 1890.

Mining activities always require a significant investments in infrastructure before the actual mining takes place especially in a context where deposits to be mined are located in remote areas lacking infrastructure. It is for this reason that minerals are usually regarded as a catalyst of development in as far as it can provide the basic infrastructure (road, ports, rail, power and water) that can open up previously isolated areas or enhance existing areas of low economic activity. Zimbabwe has a history of infrastructural development that has greatly been influenced by the mining industry.

111 POSCO: The Pohang Iron and Steel Company; “With the strong Korean shipbuilding and automobile industry dependent on POSCO for steel, it has been seen as the bedrock of Korea’s industrial development over the past 40 years.” (www.en.wikipedia.org/wiki/POSCO).

112 In 1934 the Japanese government merged The Imperial Works at Yawata with six leading private steelmakers--Wanishi, Kamaishi, Fuji, Kyushu, Toyo, and Mitsubishi & mdasho to form the Japan Iron & Steel Company, Ltd., which was about 80% owned by the government. (http://www.fundinguniverse.com/company-histories/Nippon-Steel-Corporation-Company-History.html).

113 Norrbottens Järnverk- merged into SSAB, privatised 1989
This can play an important role in opening up regions for other economic activities with the objective of creating sustainable local economies, post mineral depletion.

2.7.2.1.2 POLYMERS

Polymers (plastics) are the second most important global feedstock into manufacturing at around 400Mtpa. The Zimbabwean plastics industry is still nascent but has the potential to grow provided that it can source competitively priced feedstocks and have cost-effective logistics to markets.

Recognising the seminal importance of low-cost manufacturing feedstocks, several developing states established state utilities (refineries or oil companies) to supply low-cost (or cost-plus) polymer feedstocks into their manufacturing sector and thereby underpin their international competitiveness. Examples are CPDC (polymers) in Taiwan\(^{114}\), Petronas in Malaysia, Sasol in SA and Petrobras in Brazil. Brazil has had a “Plastic Export Plan” since 2002 and the converter sector currently employs around 300k workers. This would equate to about 20k workers in Zimbabwe with ~6% of the Brazilian population, but a much lower GDP/capita.

Electricity sales to the mining sector averaged about 1,500GWh/an for the period 1995 to 2006 then dropped below 1000GWh due the crisis and supply constraints.

Local polymer production could be based on coal gasification or CBM. Government needs to investigate the viability of establishing a world-scale facility based on these resources and attracting an investor or a JV partner with the requisite technologies and capital.

2.7.2.1.3 BASE METALS

The most important base metals feedstock into manufacturing (and infrastructure) is copper. Zimbabwe has very limited primary copper resources and modest copper

\(^{114}\) CPDC: China Petrochemical Development Corporation: Owned by the KMT, its principal activity is refining petroleum and petrochem production: chloral-alkali, phosphoric acid and other related chemicals and derivative products. Other activities include researching and developing chemical related products; trading, handling and selling garment, accessory, electric, book, stationery, automobile and household products, entertainment facilities; designing and selling computer software, handling information registration. (www.corporateinformation.com)
associated with the PGM and nickel resources. Copper is mainly consumed in the electrical, construction, transport and capital goods sectors. Most copper alloy (brass) is generally obtained from scrap.

Copper was produced by MCM (mined out), BNC (scheduled to restart) and the Empress BMR115 operates on imported feed. It is currently extracted by the PGM miners as a by-product, but it leaves the country as a concentrate or matte to be refined in South Africa, despite the existence of several BMRs, including the BNC and the Zimplats BHP-Utah Selous BMR (on care and maintenance).

Government needs to commission an independent investigation on options for a BMR based on the PGM miner’s feed followed by a PMR116 to produce PGMs and gold. Both primary copper and scrap needs to be made available in the domestic market at competitive prices (EPP).

2.7.2.2 MINERALS FOR ENERGY

Adequate, reliable and low-cost energy is critical to the development of Zimbabwe, particularly the mineral forward linkage industries (beneficiation). The main minerals used in power generation are:

2.7.2.2.1 COAL

Coal is an important energy feedstock in Zimbabwe at nearly two-thirds of electricity supply capacity. The major power supply sources are the Hwange coal-fired thermal power station (920 MW capacity), and the Kariba South Bank hydro power station (750 MW capacity). There are also 3 minor coal fired stations with a combined capacity of 290 MW. Overall installed generation capacity is about 1960 MW but available capacity is about 1100 MW.

The Hwange thermal power plant presently produces between 400-550MW of power out of its 920 MW capacity due to regular failures of components in both the generation blocks as well as common auxiliary facilities and lack of spares for maintenance. Current national peak demand is estimated at between 1800 and 2100 MW resulting in power supply shortfalls of between 700 and 900 MW This situation has given rise to

115 BMR: Base Metals Refinery

116 PMR: Precious Metals Refinery
the ongoing power curtailment exercise whereby between 400 - 600 MW of national load is shed despite imports of about 300 MW.

Hwange Power Station (HPS) consumes over 2Mtpa tons of coal per annum. Hatch has completed a feasibility study for the HPS and Kariba Power Station extensions and technical bids are being sent out to pre-qualified contractors for appointment of successful contractors.\(^{117}\)

Zimbabwe has been experiencing debilitating power shortages and the generation capacity needs to be substantially expanded to cater for national energy requirements and job creation, including IPPs\(^{118}\) such as the proposed Sengwa power station (RioZim). Coal resources need to be prioritised for this need.

“We envisage Zimbabwe’s net power consumption increasing by an annual average of 8.7% over our 10- year forecast period, from an estimated 12.64TWh in 2011 to 28.70TWh by 2021. Underlying the rise in energy consumption will be a steady increase in GDP, together with the continued expansion of Zimbabwe’s population. Following an increase in 2011 real GDP of 9.3%, BMI forecasts average annual growth of 7.2% between 2011 and 2021. Meanwhile, the population is expected to rise from 12.8mn in 2011 to 14.3mn in 2016, increasing to 15.8mn in 2021.”\(^{119}\)

2.7.2.2 GAS

Zimbabwe’s CBM and shale gas resources need to be assessed for possible power generation plants (CCGT) to diversify the energy mix and to meet projected demand and the putative Lupane CCGT\(^{120}\) power station should be expedited as should an investigation on the viability of producing gas-based chemicals and fertilisers.

2.7.2.3 MINERALS FOR INFRASTRUCTURE

Zimbabwe used to probably have the best physical infrastructure in the whole of Africa outside of South Africa. It had an excellent paved and unpaved road network covering most of the country and all of the main mining areas. The railway network is well

\(^{117}\) ZESA website 2012

\(^{118}\) IPP: Independent Power Producer

\(^{120}\) CCGT: Combined Cycle Gas Turbine
developed and most major mines are linked by rail, but over the last two decades the National Railways of Zimbabwe (NRZ) failed to maintain the system and handle the rail traffic, particularly the domestic distribution of coal.

Before 1976 most mineral exports were via the Mozambican ports of Beira and Maputo, particularly the latter, but in March 1976 the Mozambican government closed these two routes in compliance with the then UN sanctions against the rebel settler regime and all mineral trade was routed through South African ports. After independence in 1980 minerals once again started flowing through the Mozambican routes but by 1984 these were once again effectively closed due to sabotage by the South African special forces and/or their surrogate, Renamo. They were reopened through the intervention of Zimbabwean troops in the second half of the eighties, but unfortunately the port of Beira’s ability to handle bulk mineral cargo is limited, both in terms of the port’s handling facilities and the limited tonnage of vessels that can enter the port. Maputo (Matola) is more suited for mineral exports, but the virtual collapse of NRZ has resulted in most mineral exports being trucked to South Africa. They future of bulk mineral development for export (e.g. iron ore and coal) will critically depend on establishing heavy haul rail corridors to the closest coast (Mozambique) that could have a much wider impact on the national economy (SDI), by significantly lowering the logistics cost for all products, possibly to as low as $6/t, from the centre of the country.

The Zimbabwe Electricity Supply Authority (ZESA) has an electricity grid over most of the country including all of the major mines, but has it has been vandalised by thieves (for copper and aluminium. ZESA has failed to maintain generating capacity resulting in regular power outages, but tenders have reportedly closed for the construction of the new generation capacity at Kariba South Power Station and Sino Hydro is apparently the only bidder for the project. The Hwange power station will also be expanded by 600MW. These development projects will add 900MW to Zimbabwe’s capacity by 2016. In addition ZESA is planning a 350MW gas-fired station based on CBM (Coal Bed Methane) and a tender for the quantification the Lupane CBM gas has reportedly gone out. It also plans to invest in a 30MW hydropower plant at Gairezi and in $500 million transmission integration project. ZESA’s main constraint is in raising capital for its $2 billion new build, given that the state is virtually bankrupt with a reported $10 billion sovereign debt burden.

The Cabora Bassa (HEP) power station in Mozambique, is linked to the Zimababwean grid at Bindura and several mines have direct supply from HCB (Hidroelectrica Cabora
Bassa). ZESA imports from HCB are set to resume with the reduction of the HCB debt from $150 million to $3 million and power imports are set to increase from the current 50MW to 350MW. In addition, the new coal projects in Tete Province will reportedly also produce 1-2GW of thermal power from the lower grade overburden coal, which could be available to Zimbabwe.

Zimbabwe and Zambia are also working on a joint 1 650MW Batoka Gorge project below Vic Falls which is set for completion in 2019 after Zimbabwe agreed to clear its $71 million legacy debt with Zambia by end of March 2014.

Currently there is a generation capacity shortfall of 750MW, which will reportedly be reduced to 480MW in 2013 and 445MW in 2014 after new projects are come on stream. The average national power production is about 1400MW against demand of around 2200MW. The shortfall is met through imports through the SAPP.

Zimbabwe used to have an excellent financial sector boasting several commercial banks, merchant banks, a discount house, and a thriving stock exchange. This is rapidly being rebuilt and confidence is returning after the hyperinflation damage, but there is a general lack of liquidity in the economy which needs to be resolved by sorting out the sovereign debt (HIPC process) and recapitalising the Reserve Bank to underpin the banking sector. The proposed RRT 30% advances could be used to this end.

Fixed line telecommunications needs to be rehabilitated after years of under-investment. However wireless communications have improved with the entry of two mobile telephony operators, but data speeds and coverage are still poor.

An elucidation of how the potential of the mineral spatial linkages could have a much wider impact on national growth and development is perhaps best done through the following case study, on a potential development corridor based on the Mwanesi Range iron resources (Case Study: The Putative Mwanesi Development Corridor - SDI).

Zimbabwe also has significant resources of chromium and nickel, the key constituents of stainless steel. The possibility of establishing a Zimbabwean stainless steel slab plant based on local FeCr and Ni needs to be investigated, once the power shortage has been resolved.

2.7.2.3.1 CEMENT (LIMESTONE, COAL, GYPSUM)
The Zimbabwean construction industry could be a major job creator and growth in the construction industry has obvious implications for the local cement industry. By 2010, production capacity stood at around 800ktpa, though production is under 500ktpa, mainly due to power shortages. The main companies are PPC, Lafarge, Sino-Zimbabwe Cement Company (JV with the IDC) which started up in 2001 near Gweru. These four players operate as a virtual cartel resulting in high cement prices with consequent negative impacts on the cost of construction. Cement is a vital feedstock for infrastructure provision and as such cement minerals (limestone, gypsum and coal) and the country has ample resources of calcareous rocks for the nation’s construction needs. However, the state needs to ensure that cement is supplied into the local market at the lowest possible prices (EPP).

2.7.2.3.2 OTHER INFRASTRUCTURE MINERALS

Steel (rebar, profiles, etc.) and copper (electrification) are dealt with under “Minerals for Manufacturing”, above.

2.7.2.4 MINERALS FOR AGRICULTURE (NPK)

“Most of the soils in Zimbabwe are nutrient deficient and are degrading at a rapid rate. Large portions of Zimbabwe’s soils are derived from granitic parent materials with nutrient-deficient sandy soils and low organic matter contents. The soils with ‘greenstones,’ as parent material have a much higher inherent soil fertility. Zimbabwe’s soils are continuously cropped but nutrient removal through harvesting without sufficient nutrient replenishment leads to a continuing decline in soil fertility. The two main limiting nutrients on Zimbabwe’s soils are nitrogen and phosphorus.”

121 Van Straaten, Peter 2002 “Rocks for Crops: Agrominerals of Sub-Saharan Africa”, University of Guelph (www.uoguelph.ca/~geology/rocks_for_crops/56zimbabwe.PDF)
Phosphate: There are four Mesozoic carbonatite deposits (Doro, Shawa, Chishanya, and Katete: Figure 46), but only Dorowa is mined for phosphates by Dorowa Minerals (Chemplex Corporation Ltd.) which produces phosphoric acid using pyrites from the Iron Duke Mine to make phosphatic fertilisers.

Nitrogen: Sable Chemical Industries Ltd. (TA Holdings Ltd., 51%; Chemplex Corporation Ltd., 36%; Yara Zimbabwe) is the only producer, from the electrolysis of water to make ammonium nitrate, but production by this route is expensive and is severely curtailed by power shortages. Nitrogen is a critical input into agriculture and jobs in agriculture and agro-processing. The viability of producing nitrogenous fertilisers from coal gasification and/or CBM should be investigated.

Liming: Zimbabwe has over 200 known deposits/occurrence of calcareous rocks (limestone, dolomite, calcrete), many of which are used for conditioning of soils.

Given the lack of competition in fertiliser production, price abuse is inevitable (IPP) and the price of these critical inputs into downstream jobs should be regulated (at EPP).

2.7.3 RESOURCES DOMINANCE
2.7.3.1 PGMS

Platinum is the only metal where southern Africa has a majority of world’s resources (Zimbabwe and SA have close to 90% of global Pt resources) and which has relative supply and demand inelasticity. However, the bulk of the region’s platinum production is beneficiated in the developed countries into catalysts and jewellery. In order for Zimbabwe to use this potential producer power to realise the backward and forward linkages opportunities, it requires influence over the marketing of its PGM assets.

In this regard the state should amend the Gold Trade Act to become a “Precious Metals Act” requiring state authorisation to market both gold and PGMs (Authorised Dealers). Platinum, like gold, represents a store of value (platinum bars/coins) and should accordingly fall under the same legislation. Marketing authorisation should then only be granted if the producers jointly commit to a reasonable plan for the refining of PGMs in Zimbabwe. A rough threshold for a basic refinery (Pt, Pd, Rh & Au) viability is apparently around 500,000oz per annum (~16tpa) of PGMs which has already been surpassed (2011 = ~21tons).

Consideration should be given to the coordination of PGM marketing with South Africa in order to negotiate a PGM beneficiation plan with global customers that would see the establishment of downstream PGM value addition being located in the two countries.

Source: www.platinum.matthey.com, accessed 02/11/11

Figure 47: Platinum Exchange Traded Funds (EFTs)

Like gold, platinum has become a major store of wealth (investment instrument), especially in times of global uncertainty. “Total net investment demand for platinum was 650,000 oz in 2010... Investment demand for platinum in 2010 was largely a story
of physically-backed ETFs122, with total net fund holdings reaching over 1.2 million ounces for the first time in 2010 (Figure 47). The unique combination of worldwide economic circumstances in 2010, a time of low interest rates and rising commodity prices, led to a flood of investment in ETFs123.

2.7.3.2 OTHER MAJOR GLOBAL RESOURCES (CHROMIUM, ASBESTOS)

Other minerals where Zimbabwe has a strong position in terms of global resources are chromium, chrysotile asbestos and to a lesser extent Lithium. However the supply and demand elasticities (substitutes, other accessible resources, etc.) are not as strong as for the PGMs. Consequently the state should commission an expert study to assess the potential producer power for each (including regional producers) by determining the relative supply elasticity (other resources, substitutes, etc.) and demand elasticity (price sensitivity, alternatives, etc.). The Ministries of Mining and of Trade and Commerce could manage the study and develop a strategy to maximise the economic linkages, as per PGMs, based on the assessment.

2.7.4 INSTRUMENTS TO GROW THE DOWNSTREAM (FORWARD) LINKAGES:

1. Ensure competitive local prices (EPP) of strategic mineral feedstocks into manufacturing, infrastructure, energy, agriculture;
2. Resolve the debilitating power constraint through investments into power generation and through imports, including the temporary permitting of direct imports by beneficiators;
3. Harmonise mineral production and industrial strategies through strong coordination of Ministries of Mines and of Industry, of Agriculture, etc.
4. Introduce beneficiation milestones in mining leases at 5, 10, 15 and 20 years and make downstream value addition a bid variable for all new competitively tendered mineral concessions;

122 ETFs: exchange traded funds
5. Impose a small export tariff (<5%) on select raw mineral exports to encourage beneficiation (where independently shown to be viable). The viability of a PGM refinery should be assessed and, if positive, an export tax on unrefined PGMs should be considered;
6. Establish new steel producers to sell at EPP (Mwanesi?) in the domestic market;
7. Ban all scrap metal exports (reserve for domestic use);
8. Producer Power- PGMs: Amend the Gold Trade Act to also require PGM Authorised Dealers;
9. Enlarge the local market through equitable regional integration (SADC, SACU, CMA);
10. Support beneficiation technology and skills development (through creation of a Knowledge Fund).

2.8 KNOWLEDGE LINKAGES: MAXIMISING THE DEVELOPMENT IMPACT

2.8.1 INTRODUCTION

A recent survey124 of successful resource-based industrialisation states clearly shows that countries that successfully utilised their natural endowment for developmental purposes were successful at technical training (HRD) and technology development (R&D). These are a \textit{pre-requisite} for taking advantage of the other minerals economic linkages opportunities, particularly the backward linkages. These countries included Sweden, Finland, China, Malaysia, Australia and, more recently, Chile and Brazil, though the last two are still well behind the Nordics. In order to effectively use mineral resources as drivers of development, adequate human and technology development is a necessary pre-condition.

HRD and R&D are seminal to unlocking the developmental potential of mineral resources (especially in the linkage industries) and virtually all the countries that have successfully used their resources to industrialise, invested heavily in technical HRD

and R&D. Failure to attend to this will *severely compromise* and constrain all other resource-based development plans and interventions.

An important task of a state minerals company (ZMDC) should be to stimulate investment into human and technology development- Statoil in Norway has trained over 80,000 people since it was established in the ‘70s. Likewise Outokumpo (Finland) and LKAB (Sweden) fulfilled critical HRD and R&D mandates. The technology division of Outokumpu has been spun out into a separate company, Outotec, which has become a world leader in mineral processing and metallurgical technologies. In general there is a very strong correlation between establishing the mineral linkages sectors and concerted investment into technical HRD and technology development. All resource-based economies that managed to industrialise invested heavily in technical HRD and R&D (particularly the Nordic countries). Consequently a key mandate of ZMDC should be minerals HRD and R&D to underpin the mining industry in general and the upstream cluster in particular. ZMDC should collaborate with other government departments and tertiary institutions in developing and strengthening R&D and human resources capacity.

Education, and the knowledge it generates, is a key factor in development – it is crucial for economic and social progress everywhere. No country has managed to attain a high level of economic and social development without appropriate investments in good quality schooling and post-school education. Education impacts on economic development in many ways, through for example, its impact on labour productivity, poverty eradication, technology, and health.

There is a strong correlation between knowledge and economic performance in general, and knowledge and (economic) sectoral performance in particular. Investment in technical skills at both the schooling and post-schooling levels is critical for the optimal performance, for example, of the Zimbabwean minerals sector and linkage industries. However, the current state of education and training in Zimbabwe is not conducive to knowledge generation and the development of the appropriate technical skills necessary for growth in key sectors such as mining and its important backward and forward linkages sectors. The education and training challenge comprises both quantitative and qualitative dimensions.
Table 25: Zimbabwe- UNICEF Education Indicators

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Youth (15-24 years) literacy rate (%), 2005-2010*, male</td>
<td>98</td>
</tr>
<tr>
<td>Youth (15-24 years) literacy rate (%), 2005-2010*, female</td>
<td>99</td>
</tr>
<tr>
<td>Number per 100 population, 2010, mobile phones</td>
<td>60</td>
</tr>
<tr>
<td>Number per 100 population, 2010, Internet users</td>
<td>12</td>
</tr>
<tr>
<td>Primary school participation, Net attendance ratio (%), 2005-2010*, male</td>
<td>90</td>
</tr>
<tr>
<td>Primary school participation, Net attendance ratio (%), 2005-2010*, female</td>
<td>92</td>
</tr>
<tr>
<td>Primary school participation, Survival rate to last primary grade (%), 2005-2010*, survey data</td>
<td>82</td>
</tr>
<tr>
<td>Secondary school participation, Net attendance ratio (%), 2005-2010*, male</td>
<td>45</td>
</tr>
<tr>
<td>Secondary school participation, Net attendance ratio (%), 2005-2010*, female</td>
<td>45</td>
</tr>
</tbody>
</table>

Although literacy rates and primary school attendance are high, only 45% of children attend high school (Table 25) and only 1% reaches the SACMEQ125 Level 8 in mathematics competency, below the regional average (1.2%). More disturbing is that only 0.1% of rural children reach Level 8 mathematics competency (Table 26). Consequently a portion of mineral rents needs to be invested in school mathematics and science education, both in the mining areas through CSI126 and nationally through the fiscus. Due to the economic crisis, there has been a massive exodus of Zimbabwean educators who are teaching in many SADC states and beyond. A strategy needs to be developed to re-attract this valuable diaspora, possibly through engaging a competent head-hunting agency to locate them, and a package of incentives to bring them back (subsidised relocation costs, placements, remuneration, etc.)

125 SACMEQ: Southern and East African Consortium for Monitoring Education Quality

126 CSI: Corporate Social Investment
2.8.1.1 HIGHER EDUCATION AND ECONOMIC GROWTH

Higher education is an important form of investment in human capital development. In fact, it can be regarded as a high level or a specialized form of human capital, contribution of which to economic growth is very significant. The contribution of higher education to development can be varied: it helps in the rapid industrialization of the economy, by providing individuals with professional, technical, and managerial skills. In the present context of transformation of nations into knowledge economies and knowledge societies, higher education provides not just educated workers, but knowledge workers to the growth of the economy. It creates attitudes, and makes possible attitudinal changes necessary for the socialization of the individuals and the modernization and overall transformation of the societies. Fourthly, and probably most importantly, higher education helps, through teaching and research in the creation, absorption and dissemination of knowledge. Higher education also helps in the formation of a strong nation-state and at the same time helps in globalization. Lastly, higher education allows people to enjoy an enhanced ‘life of mind’ offering the wider society both cultural and political benefits.

2.8.1.2 HIGHER EDUCATION AND TECHNOLOGICAL ABSORPTION

In a rapidly technologically changing world, technology makes a significant difference to the economic growth of nations. UNDP (2001) developed a technology achievement index (TAI), based on the degree of creation of technology in a given economy, the extent of diffusion of old and recent innovations, and human skills. It is clear from this

127 SACMEQ (Southern and East African Consortium for Monitoring Education Quality) 2010, SACMEC III Working Document #1, (www.sacmeq.org)
body of work that the level of achievement in technology critically depends upon the level of higher education in a given economy. After all, it is higher education and research that help in developing new technology; and it is higher education and research that contributes to innovations and in their diffusion. Consequently one can expect a very strong effect of higher education on the development of technology in any society. In fact, the level of achievement in technology may be a close indicator of economic growth itself. Most countries with high enrolment ratios in higher education became ‘leaders’ in technology, with high levels of achievement in technology, as shown in the table below. The converse is also true: a large number of countries with low enrolment ratios (say less than ten percent) are ‘marginalized’ in the area of technology. Those with medium level of enrolment ratios, nearly 20 percent, like Singapore and Hong Kong have indeed become ‘potential leaders’ in technology (Table 27. below).

Table 27: Higher Education (GER) and Technology (Technology Achievement Index)

<table>
<thead>
<tr>
<th>Gross Enrolment Ratio (GER)</th>
<th>High TAI (>0.5)</th>
<th>Medium TAI (0.4 - 0.5)</th>
<th>Low TAI (<0.4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High (>20)</td>
<td>New Zealand, Korea, Australia, Israel, Japan</td>
<td>Philippines</td>
<td></td>
</tr>
<tr>
<td>Medium (11-20)</td>
<td>Singapore</td>
<td>Hong Kong</td>
<td>Thailand, Cyprus, Syria</td>
</tr>
<tr>
<td>Low (<10)</td>
<td></td>
<td></td>
<td>Iran, Indonesia, Malaysia, India, Sri Lanka, Nepal, China, Pakistan, Zimbabwe</td>
</tr>
</tbody>
</table>

GER: Gross Enrolment Ratio; TAI: Technology Achievement Index, Source: ANC 2012

A few countries like Philippines and Thailand with medium and high levels of enrolment ratios are classified by the UNDP as “dynamic leaders”. The rest who did not expand their higher education systems well, are indeed ‘marginalized.’ There is not a single country with a low enrolment ratio (less than 10 percent) in higher education which has achieved high or medium level of achievement in the technology index.

The relationship between higher education and technology could be shown statistically as well. The simple coefficient of correlation between enrolment ratio in higher education and TAI in the Asia and the Pacific countries is as high as 0.8 and that between technology and higher education attainment it is 0.65. Though the number of observations is small, the simple regression equations estimated show a very strong
and statistically significant effect of higher education on the level of achievement of technology.

2.8.1.3 THE ZIMBABWE BRAIN DRAIN

There have been two “brain drains” (loss of skills) from Zimbabwe: The first was mainly European settlers following liberation in 1980 when an estimated 50k to 60k left because they could not adjust to the changed political circumstances. The second phase was from 1999 to 2009 when it is estimated that around 800k left\(^{128}\) mainly due to the economic crisis. “The Zimbabwe Chamber of Mines estimates that more than half the industry’s skilled personnel emigrated from the country in 2007 and that in early 2008 there were 1116 vacancies for professional and technical staff.”\(^ {129}\)

Table 28: Official Emigrants by country of destination, 2002–2005

<table>
<thead>
<tr>
<th>Destination</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFRICA</td>
<td>6,307</td>
<td>6,330</td>
<td>7,079</td>
<td>6,256</td>
</tr>
<tr>
<td>Botswana</td>
<td>2,286</td>
<td>2,193</td>
<td>2,889</td>
<td>1,524</td>
</tr>
<tr>
<td>Kenya</td>
<td>66</td>
<td>102</td>
<td>109</td>
<td>110</td>
</tr>
<tr>
<td>Malawi</td>
<td>374</td>
<td>1,076</td>
<td>496</td>
<td>687</td>
</tr>
<tr>
<td>Mozambique</td>
<td>1,372</td>
<td>1,167</td>
<td>1,751</td>
<td>1,390</td>
</tr>
<tr>
<td>South Africa</td>
<td>1,741</td>
<td>87</td>
<td>61</td>
<td>1,502</td>
</tr>
<tr>
<td>Swaziland</td>
<td>12</td>
<td>15</td>
<td>28</td>
<td>15</td>
</tr>
<tr>
<td>Tanzania</td>
<td>23</td>
<td>701</td>
<td>805</td>
<td>81</td>
</tr>
<tr>
<td>Zambia</td>
<td>274</td>
<td>718</td>
<td>577</td>
<td>540</td>
</tr>
<tr>
<td>Other</td>
<td>159</td>
<td>271</td>
<td>363</td>
<td>407</td>
</tr>
<tr>
<td>AMERICA</td>
<td>231</td>
<td>292</td>
<td>366</td>
<td>431</td>
</tr>
<tr>
<td>ASIA</td>
<td>92</td>
<td>103</td>
<td>163</td>
<td>221</td>
</tr>
<tr>
<td>EUROPE</td>
<td>1,471</td>
<td>1,584</td>
<td>3,597</td>
<td>3,758</td>
</tr>
<tr>
<td>Other</td>
<td>84</td>
<td>117</td>
<td>100</td>
<td>122</td>
</tr>
</tbody>
</table>

\(^{CSO/Zimstat in IOM 2010}\)

However, the official (CSO/Zimstat,Table 28) data “…give an extremely distorted and underestimated image of Zimbabwean emigration patterns” and “…despite the great

\(^{129}\) Hawkins 2009
variety of estimates, a range of statistical sources suggest that there is a maximum of 1.5 million Zimbabweans in South Africa, including regular and irregular migrants.”

Table 29: Positive and Negative Effects of Migration from Zimbabwe

<table>
<thead>
<tr>
<th>Positive effects</th>
<th>Negative effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Availability to emigrant workers of opportunities</td>
<td>- Net decrease in human capital stock, especially</td>
</tr>
<tr>
<td>that are not available at home</td>
<td>those with valuable professional experience</td>
</tr>
<tr>
<td>- Inflow of remittances</td>
<td>- Loss of heavy investments in subsidized education</td>
</tr>
<tr>
<td>- Technology transfers and investments</td>
<td>- Reduced quality of essential health and education</td>
</tr>
<tr>
<td>- Integration into global markets</td>
<td>services</td>
</tr>
<tr>
<td></td>
<td>- Tax revenue declines</td>
</tr>
</tbody>
</table>

Source: IOM 2010

Although there are positive effects of immigration (Table 29), they are overwhelmed by the negative effects on growth and development due to the depletion of human capital stock.

Several studies indicate that two-thirds of Zimbabweans abroad intended to return to settle permanently (skilled & unskilled migrants). However “…skilled migrants might find it easier to integrate into the host country and be less unwilling to resettle even if political and economic conditions were to change”.

One of the contributors to the Finnish economic success has been ascribed to the over-production of engineers in the 50s and 60s which led to some immigration and the acquisition of world-class know-how abroad that contributed the rapid technology development and growth when they returned home in the 70s and 80s. Zimbabweans abroad could provide a similar stimulus if they can be enticed to return home.

2.8.1.4 GRADUATE HOLDING STRATEGIES

Due to the economic crisis from 1999 to 2009, Zimbabwe lost a major proportion of its skilled workforce. In the light of these losses and an education system that is not...
producing the requisite skills, the number of so-called scarce skills in the economy increased dramatically.

The training of engineers and scientists is heavily subsidised by the state and in order to discourage the exit of these skills, consideration should be given to converting the state subsidy into a notional loan that will be written off over 10 years of employment in Zimbabwe. The “loan” (difference between full costs and fees paid) should be paid off like a bond at prime over 10 years by working in Zimbabwe. If graduates decide to emigrate before 10 years, they will be liable for the full outstanding portion of the loan (i.e., the loan converts from notional to real).

2.8.1.5 MINERALS SKILLS FUND

Consideration should be given to the setting up of a Minerals Skills Fund (MSF) as a PPP with industry and tertiary education institutions (Figure 48) in combination with an obligatory corporate HRD spend of 5% of pay-roll (ex-Zimdef), as a Mining Lease condition. Contributions to the MSF would then qualify towards the obligatory HRD spend. A “normal” corporate spend on HRD to renew the corporate human asset base is currently ~5% of pay-roll: On average the SA mining industry already spends around 5% of pay-roll (R4G of R90G) on HRD and skilling\(^{132}\) (ex the 1% Skills Levy), consequently this obligation would only be a burden for below average companies that presumably rely on poaching skills from responsible companies.

\(^{132}\) Personal communication with SA Chamber of Mines, Sept 2012.
2.8.2 RESEARCH AND DEVELOPMENT (R&D)

There is a correlation between a country’s investment in technology development and its economic performance. A recent study on mineral resource based industrialisation found that there was an almost total correlation between successful industrialisation and elevated spending on technology development (>2% of GDP).

Zimbabwe needs R&D capacity in minerals technologies to enable it to take advantage of the back/forward mineral linkages opportunities, to mine more resources and to deal with technical health and safety challenges. “It creates the tools and techniques to liberate value from increasingly difficult-to-mine ore bodies; and provides the environment where the high-level technical skills can be created that will greatly increase our ability to take full advantage of mineral resources.”

Apart from universities, mineral research institutions (e.g. IMR and GML) are also important in addressing the challenge of high-level skills. Not only should they undertake fundamental and applied research, they also provide the training ground for the development of very high-level engineering skills. Both the IMR and the GML need to be re-capacitated and the development of a mining technologies development capacity needs to be considered for the Zimbabwe School of Mines. Collaborative research links between these institutions and the private sector should be strengthened.

\[133\] Maloney (2007)
2.8.3 INVESTING IN THE DEVELOPMENT OF MINERALS R&D

The Zimbabwean mineral technology needs and capacity should be surveyed, especially the needs of local mining suppliers, in order to develop a national minerals technology strategy and to prioritise technology development projects, which could also be funded through the Minerals Knowledge Fund (levy on payroll). Such a fund could also be incentivised through a concessionary tax write-off (>100%) on local R&D expenditure and a small percentage of the skills levy could be allocated to post-grad and post-doc research projects. In this regard the establishment of a dedicated Minerals Technology Fund (MTF) could be considered, funded by Knowledge Fund, State, ZMDC, COMZ, Mining companies and Donors (Figure 49).

![Figure 49: Possible Minerals Technology Fund (MTF) Structure](image)

2.8.4 INSTRUMENTS TO GROW THE KNOWLEDGE (SKILLS/R&D) LINKAGES:

If Zimbabwe is to use its mineral resources to underpin growth and development it needs to regain its lost skills, rapidly develop new skills and rebuild its minerals technology development capacity. Some proposals in this regard include:

1) The reinforcement of the National Migration Management and Diaspora Policy to include the location of skilled Zimbabweans in the diaspora and instruments to facilitate their return such as assisted relocation and remuneration subventions for critical scarce skills;

2) Investigate the conversion of tertiary state training costs into notional loan to be worked off over 15 years by working in-country (coverts to real loan if graduate exits before year 15);
3) The introduction of minimum minerals knowledge corporate spend of 5% of payroll, to fund skills formation for the minerals sector and back/forward linkage industries, as well as local technology development. The South African Mining Charter134 targets HRD expenditure of 5% of pay-roll by 2014. Including the 1% National Skills Levy, this comes to 6% of the company’s pay-roll;

4) Rebuild mineral technology development institutions (IMR, GML, BSM, Universities, et al);

5) Use of a portion of the proposed RRT to fund:
 a. The training and remuneration of Maths and Science specialists to assist in Maths and Science Education in primary schools across the country where such need is identified. The precise mechanism for implementing this should be worked out in consultation with the Ministry of Education,
 b. Grants/loans for Engineering and Science students to be administered through the Universities. Tertiary training should be free in critical technical areas;
 c. Financial support to Engineering Faculties based on the number of undergraduate students graduating and registering with the Engineering Council of Zimbabwe (ECZ), as well as financial support to Engineering Faculties for post-graduate studies.
 d. Grants for Engineering and Technician learnerships.

6) However, it may be advisable to first carry out a survey of the critical minerals technical skills needs and to then develop a HRD strategy with government. Such a plan might best be resourced by establishing a National Minerals Skills Fund, together with the GoZ and the mining industry, funded in part by the Mineral Knowledge Corporate Spend (5% of payroll).

7) Investigate the establishment of a dedicated Minerals Technology Fund (MTF) as a PPP with the mining industry, pedagogical institutions and state enterprises (ZMDC) and institutions.

\textbf{2.9 SPATIAL LINKAGES: MAXIMISING THE DEVELOPMENT IMPACT}

134 \url{www.dmr.gov.za/mining-charter.html}
Mining is one of the few economic activities that could have strong spatial (infrastructure) links to both its immediate surroundings and the local, provincial, national and regional economies, if appropriately configured. What is special about minerals is that they require a diverse set of infrastructure to support them (transport, power, water, etc.). An important aspect of mineral development impact arises from the fact that the spatial linkages that it creates first with its immediate surroundings and then with the broader economy, tend to be strong. Like most minerals economies, the spatial linkages that the minerals industry has created in Zimbabwe traverse the infrastructural spectrum. Through its demand for transportation, energy, water, and social infrastructure for the workers who work in the mines, the industry has had an impact on Zimbabwe’s economy that dates back from the BSAC invasion in 1890.

Mining activities always require significant investments in infrastructure before the actual mining takes place especially in a context where deposits to be mined are located in remote areas lacking infrastructure. It is for this reason that minerals are usually regarded as a catalyst of development in as far as it can provide the basic infrastructure (road, ports, rail, power and water) that can open up previously isolated areas or enhance existing areas of low economic activity. Zimbabwe has a history of infrastructural development that has greatly been influenced by the mining industry. This can play an important role in opening up regions for other economic activities with the objective of creating sustainable local economies, post mineral depletion.

2.9.1 INFRASTRUCTURE

Zimbabwe used to probably have the best physical infrastructure in the whole of Africa outside of South Africa. It had an excellent paved and unpaved road network covering most of the country and all of the main mining areas. The railway network is well developed and most major mines are linked by rail, but over the last two decades the National Railways of Zimbabwe (NRZ) failed to maintain the system and handle the rail traffic, particularly the domestic distribution of coal.

Before 1976 most mineral exports were via the Mozambican ports of Beira and Maputo, particularly the latter, but in March 1976 the Mozambican government closed these two routes in compliance with the then UN sanctions against the rebel settler regime and all mineral trade was routed through South African ports. After independence in 1980 minerals once again started flowing through the Mozambican routes but by 1984 these were once again effectively closed due to sabotage by the South African Special
Forces and/or their surrogate, Renamo. They were reopened through the intervention of Zimbabwean troops in the second half of the eighties, but unfortunately the port of Beira’s ability to handle bulk mineral cargo is limited, both in terms of the port’s handling facilities and the limited tonnage of vessels that can enter the port. Maputo (Matola) is more suited for mineral exports, but the virtual collapse of NRZ has resulted in most mineral exports being trucked to South Africa. They future of bulk mineral development for export (e.g. iron ore and coal) will critically depend on establishing heavy haul rail corridors to the closest coast (Mozambique) that could have a much wider impact on the national economy (SDI), by significantly lowering the logistics cost for all products, possibly to as low as $6/t, from the centre of the country.

The Zimbabwe Electricity Supply Authority (ZESA) has an electricity grid over most of the country including all of the major mines, but has it has been vandalised by thieves (for copper and aluminium. ZESA has failed to maintain generating capacity resulting in regular power outages, but tenders have reportedly closed for the construction of the new generation capacity at Kariba South Power Station and Sino Hydro is apparently the only bidder for the project. The Hwange power station will also be expanded by 600MW. These development projects will add 900MW to Zimbabwe’s capacity by 2016. In addition ZESA is planning a 350MW gas-fired station based on CBM (Coal Bed Methane) and a tender for the quantification the Lupane CBM gas has reportedly gone out. It also plans to invest in a 30MW hydropower plant at Gairezi and in $500 million transmission integration project. ZESA’s main constraint is in raising capital for its $2 billion new build, given that the state is virtually bankrupt with a reported $10 billion sovereign debt burden.

The Cabora Bassa (HEP) power station in Mozambique, is linked to the Zimbabwean grid at Bindura and several mines have direct supply from HCB (Hidroelectrica Cabora Bassa). ZESA imports from HCB are set to resume with the reduction of the HCB debt from $150 million to $3 million and power imports are set to increase from the current 50MW to 350MW. In addition, the new coal projects in Tete Province will reportedly also produce 1-2GW of thermal power from the lower grade overburden coal, which could be available to Zimbabwe.

Zimbabwe and Zambia are also working on a joint 1 650MW Batoka Gorge project below Vic Falls which is set for completion in 2019 after Zimbabwe agreed to clear its $71 million legacy debt with Zambia by end of March 2014.
Currently there is a generation capacity shortfall of 750MW, which will reportedly be reduced to 480MW in 2013 and 445MW in 2014 after new projects come on stream. The average national power production is about 1400MW, against a demand of around 2200MW. The shortfall is met through SAPP imports.

Zimbabwe used to have an excellent financial sector boasting several commercial banks, merchant banks, a discount house, and a thriving stock exchange. This is rapidly being rebuilt and confidence is returning after the hyperinflation damage, but there is a general lack of liquidity in the economy which needs to be resolved by sorting out the sovereign debt (HIPC process) and recapitalising the Reserve Bank to underpin the banking sector. The proposed RRT 30% advances could be used to this end.

Fixed line telecommunications needs to be rehabilitated after years of under-investment. However wireless communications have improved with the entry of two mobile telephony operators, but data speeds and coverage are still poor.

An elucidation of how the potential of the mineral spatial linkages could have a much wider impact on national growth and development is perhaps best done through the following case study, on a potential development corridor based on the Mwanesi Range iron resources:

2.9.1.1 CASE STUDY: THE PUTATIVE MWANESI DEVELOPMENT CORRIDOR (SDI\(^{135}\))

The Mwanesi Range NE of Chivhu contains large iron ore resources over a 60km banded ironstone formation (BIF\(^{136}\)) in the shape of a compressed letter “C” (Figure 50). Resources are estimated at 33 billion tons\(^ {137}\) grading at about 40% Fe, necessitating upgrading to a saleable product (~65% Fe).

\(^{135}\) SDI: Spatial Development Initiative (Development Corridor)

\(^{136}\) BIF: Banded Ironstone Formation- alternating thin layers of iron ore & silica/shale

Initial indications are that this resource could constitute an “anchor project” for a Development Corridor (DC) to the Mozambican coast (Port of Beira or a new port north of Beira) that could catalyse numerous other developments along the corridor in sectors such as agriculture & agro-processing, forestry & wood products, manufacturing, etc. (Figure 51).

Such a DC (Figure 52) could also **dramatically lower Zimbabwe’s logistics costs** to the world and significantly increase its economic competitiveness. However, in order to optimise the developmental impact of this seemingly significant mineral asset, the
seminal economic linkages need to be maximised through a well-crafted international tender of the concession to identify a partner that will not only develop the mine, but, more importantly, use the asset to catalyse wider development across the economy.

Figure 52: Putative Mwanesi Development Corridor

2.9.1.1.1 IRON ORE LINKAGES

This project could underpin a massive boost to the Zimbabwean economy, if the concession is carefully configured to maximise the potential wide-ranging economic linkages:

2.9.1.1.1.1 FISCAL LINKAGES:

The state tax take over the life of the concession should be by the most important bid element – the bidders could bid up the Resource Rent Tax (RRT) from a base rate of 50%, or a combination of the RRT rate and the royalty rate. Mining and upgrading costs should be about $12-$15/t and transport costs to the coast could be as low as $15/t, resulting in an FoB coastal cost of ~$30/t. Assuming a long-term iron ore fines price of ~$70/t, this would result in a profit of ~$40/t once the capex has been amortised. Consequently a 50% RRT could yield around $1200 million per annum for a production rate of 60 Mtpa, once “steady-state” is reached (after capex is paid). There
would also be numerous other fiscal revenues from CIT138, royalties, tariffs, PAYE, etc., both from the project, the linkages projects and economic activity catalysed by the project (collateral impacts).

\subsection*{2.9.1.1.1.2 FORWARD LINKAGES:}
Iron/steel is by far the most important feedstock into manufacturing globally and Mwanesi could underpin the revival of Zisco (Redcliff) and/or a new steel flat products (CRC139) plant located either at Redcliff or Mwanesi, as well as a possible gas-based reduction plant (iron/steel) at the coast in Mozambique140. The availability of iron/steel in the domestic market at EPP141 could in turn underpin the revival of Zimbabwean manufacturing. Consequently, a second bid item should be to bid up investments in downstream iron/steel (value addition).

\subsection*{2.9.1.1.1.3 BACKWARD LINKAGES}
The Mwanesi mega mine, steel plant/s and infrastructure will create a large new market for a wide range of inputs, including capital goods (plant & machinery), consumables and services. All of these present potential investment opportunities. The third bid item should be to bid up investment in upstream industries/activities by bidding up the Zimbabwean local content by year 5, 10, 15, 20.

\subsection*{2.9.1.1.1.4 KNOWLEDGE LINKAGES}
This project should stimulate massive development of local skills and technology capacity which should in turn facilitate the backward & forward linkages. Consequently the fourth biddable element should be the annual investment in local HRD and R&D.

\subsection*{2.9.1.1.1.5 SPATIAL LINKAGES}

138 CIT: corporate income tax
139 CRC: cold rolled coil
140 However, the concession should stipulate that ore must be made available to local beneficiators at a cost plus price (cost plus a reasonable return)
141 EPP: export parity price = international price less the logistics costs = competitive price.
In the longer term the spatial linkages emanating from this project could have the largest impact on the Zimbabwean economy, through the provision of a low-cost logistics connection to the global economy (Figure 53). This could underpin widespread economic activity across the economy. However these spatial linkages will not be realised unless configured and facilitated through the establishment of a SDI programme with Mozambique, to maximise the collateral economic impacts to transform a resources-corridor into a development corridor. Consequently the concession should stipulate **third party access at non-discriminatory prices** to all concession infrastructure, as well as obligatory over-capacity, to cater for the rest of the economy. It should also stipulate that an ore slurry pipeline to the coast will only be permitted once a low-cost new rail link has been established, to maximise the collateral impact (3rd party users) of the transport infrastructure. The degree of excess infrastructure capacity could also be a biddable tender item.

Source: Author

Figure 53: National gateway to the World?

2.9.1.1.2 WAY FORWARD

A schematic sequencing for the public tender of the Mwanesi deposit, with Mozambique, is presented in Figure 54.

1. The current Essar agreement should be restricted to the rehab of Zisco with sufficient ore resources to realise this (possibly the enriched high grade...
haematite deposits). BIMCO could be transferred to the ZMDC who could then undertake this mega concession, with other government departments & agencies, through public tender to select an international partner that offers the highest bid in terms of realising the economic linkages (above) and consequent growth and development.

Figure 54: Mwanesi- Possible Tender Process

2. The Government of Zimbabwe should invite the Government of Mozambique to “partner” Zimbabwe on the concession, especially as regards the transport corridor, new port/terminal and the back-of-port facilities, including a possible pelletising plant and second iron/steel plant, with a view to a single infrastructure concessioner (NRZ & CFM?) to ensure seamless logistics operations.

3. The two governments should appoint a Joint Project Team (JPT) to coordinate the selection of the best possible investment partner/consortium.
4. The JPT should engage a CRIRSCO⁴² compliant company to develop an accredited Resource Prospectus from all the existing data on the deposit.

5. The JPT should publish a call for EOI⁴³ in the appropriate international media/websites to get the maximum possible coverage of potential investment partners. The EOI should include the bidder’s financial and technical capability (including similar project experience) to carry out the project.

6. A shortlist of 10-20 of the top EIO companies/consortia should be made, based on their capability to execute the project and other criteria desired by government.

7. The JPT should engage world-class transaction advisors using resources from existing facilities/resources (ALSF⁴⁴, ISLP⁴⁵, UNDP, etc) and/or resourced by a project partner DFI⁴⁶ (e.g. AfDB, KfW, IDC, DBSA, etc.) in partnership with a local investment bank, selected by ZMDC.

8. The short-listed companies should then be invited to pick up the RFP⁴⁷ for a small fee ($20k-$40k) which will contain the “Bid Pack” including the critical bid scoring matrix, outlining the nation’s aspirations to optimise all of the project’s potential economic linkages (Error! Reference source not found.). The potential bidders should be given at least 90 days to develop and submit their bids (matrix elements).

9. The sealed bids should be opened and scored at a public event and the top two preferred bidders should be announced immediately.

10. A thorough due diligence should be carried out on the top two preferred bidders and if one fails, it should be replaced by the third-placed bidder.

11. Negotiations to arrive at a BAFO⁴⁸ and to finalise the concession contract elements should be carried out simultaneously with both bidders (in separate

⁴² CRIRSCO: Committee for Mineral Reserves International Reporting Standards (e.g. SAMREC, JORC). www.crirSCO.com
⁴³ EOI: expression of interest
⁴⁴ ALSF: African Legal Support Facility (AfDB)
⁴⁵ ISLP: International Senior Lawyers Project
⁴⁶ DFI: Development Finance Institution
⁴⁷ RFP: Request for Proposals
⁴⁸ BAFO: Best And Final Offer
rooms) to flush out the best possible contract for the peoples of Zimbabwe and Mozambique.

Table 30: An indicative Mwanesi Bid Matrix

<table>
<thead>
<tr>
<th>Tax Rate - RRT149</th>
<th>Bid up from, say, 50%</th>
<th>40%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downstream</td>
<td>% extra VA (iron/steel) above base product (ore, conc) exports</td>
<td>20%</td>
</tr>
<tr>
<td>Upstream</td>
<td>% local content (VA) purchases @ 5y, 10y, 15y = \sum%VA</td>
<td>20%</td>
</tr>
<tr>
<td>HRD & R&D</td>
<td>$$/an local spend- Bid up from $X/an</td>
<td>10%</td>
</tr>
<tr>
<td>Extra infrastructure</td>
<td>% extra capacity times the base capex for power, transport, water, etc. = Σextra$ (above obligatory excess capacity)</td>
<td>10%</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>100%</td>
</tr>
</tbody>
</table>

12. The final concession contract for ~30 years should be drawn up and concluded between Zimbabwe, Mozambique (Figure 55) and the concessionaire, with clear investment and output milestones, which if not met, could trigger a concession suspension.

13. Execution of the concession contract.

149 RRT: Resource Rent Tax (ROI > long-bond +7%)
2.9.1.1.3 CONCLUSIONS ON MWANESI

The Mwanesi Range iron ore resources could underpin a putative Mwanesi SDI that could be configured to be by far the largest investment and development project in the history of both Zimbabwe and Mozambique, and dramatically lower national logistics costs. This could facilitate economic activity in diverse industries across the economy and position Zimbabwe’s manufacturing sector to compete in global markets.
3. DISCUSSION

By far the major two problems facing the mining industry have been insufficient and erratic power supply as well as the lack of mineral policy certainty (combined with sudden impositions of new royalties, fees and opaque indigenisation targets). Dollarisation and strong international prices have however underpinned a remarkable recovery of the sector since 2009.

The next pressing problem is the acute national shortage of capital and the high interest rates. This particularly affects the smaller mines (mainly gold) that lack the ability to raise capital abroad. A prerequisite for building liquidity in the economy is the resolution of the national debt burden (around $10) through, for example, a HIPC process with the main debtors. The Reserve Bank should be recapitalised, in part possibly through the proposed RRT 30% advance, which would allow it to play its role of “lender of last resort” to the commercial banking sector and to consequently bring down interest rates through the repo rate.

The increases in energy costs, caused by Zesa’s requirements to rehabilitate and expand the current generation and transmission capacity, as well as supply shortages, are constraining the sector. This should be urgently resolved through temporarily allowing more foreign exchange earning mines to import electricity until Zesa’s rehab/expansion projects give it the capacity to supply locally, as well as licensing IPPs (e.g. RioZim’s Sengwa thermal power project). In addition to the expansion and new build projects currently under consideration, the viability of Zesa partnering with coal miners in Tete Province in Mozambique on their planned low-cost thermal power projects, should be investigated.

As a land-locked country Zimbabwe has logistic problems in getting its mineral products to the nearest ports. These problems have been compounded by the virtual collapse of the NRZ and the limited capacities of the Mozambican ports of Maputo and Beira (two-thirds of Zimbabwe’s exports before the independence of Mozambique), forcing exports to leave via more distant South African ports, at higher cost. As with ZESA, the NRZ’s major constraints are capital and skilled personnel (managerial and

\[\text{HIPC: Highly-Indebted Poor Countries}\]

150
professional), compounded by the exodus during the economic crisis preceding dollarisation.

Due to the massive exit of skilled personnel, their replacement is now cited by most medium to large mining companies as their most serious problem after power shortages. There was a steady flow of experienced staff out of the country after independence (mainly settlers) which became a stampede during the melt-down (mainly Zimbabweans), though there have been some signs of skills returning. Skills shortage is not only peculiar to the Zimbabwean minerals industry, it is a world-wide challenge. The recent Ernst and Young Report (2012)151 on the top ten business risks in the world minerals industry lists shortage of skilled manpower only second to resource nationalism. Thus, Zimbabwe’s skills strategy has to be cognisant of the competition for the limited skills world-wide.

Over the last thirty years the mines have moved away from migrant labour and currently have a permanent workforce, but this has not led to a significantly greater degree of mechanisation, due to capital constraints.

Only a small fraction of the total value of mineral production is consumed by local industries. By far the majority is exported to be transformed into finished products elsewhere, some of which will ultimately be re-imported by Zimbabwe. Primary commodities, mineral and agricultural, typically constitute about 90% of total exports. There are several projects for the further transformation of minerals in the country that have been under consideration for some time such as the manufacture of stainless steel from local chromium, nickel and steel; the refining of PGMs, the manufacture of refractory bricks; the spinning of asbestos fibre, and a coal-based chemical industry.

But, as long as downstream transformation is only for import substitution for the local market, the primary commodities sector (mining and agriculture) will continue to be the foreign exchange generator for the rest of the economy and the manufacturing sector will continue as a net foreign exchange consumer.

Strategies for integrated economic development therefore need to increase exports of manufactures, decrease dependence on primary commodity exports and decrease dependence on imported capital goods by developing a local capital goods

151 Business Risks Facing Mining and Metals 2012-13
manufacturing capability. Given the limited possibilities of Zimbabwe penetrating the world market for manufactures, regional economic integration (or “collective self-reliance”) in the region is the only viable method of breaking away from the present vertical integration with developed world and, increasingly, Asia. Local content requirements have to be explicit upfront to concretely support integrated local development.

A regional strategy is not only necessary in terms of an increased market for manufactures, but also in terms of utilising the larger resource base (human and material) for the development of primary industries, particularly capital goods. The SADC region produces, or has resources of, virtually all the raw materials essential for integrated industrialisation. Regional cooperation in metals refining has already taken place in the case of copper-nickel matte from Botswana and, previously, copper concentrates from Mozambique were refined in Zimbabwe, but there is a large potential for similar schemes in the region.

But by far the most important regional cooperation by Zimbabwe with another SADC state was the securing of the rail and road corridors through Mozambique to the ports of Beira and Maputo. This cooperation could be massively expanded through the putative Mwanesi SDI. An essential prerequisite for the maintenance of mineral production is the provision of an operational and cost-effective transport system for exports.

Zimbabwe had a diverse and well-developed minerals sector which is rapidly recovering and plays an crucial role in its economy as a source of fiscal revenues, as an employer, a foreign exchange earner, as the provider of raw materials to the manufacturing, metallurgical sectors and agricultural sectors and as a market for supplier industries. The mining sector used to be supported by an exceptional physical and financial infrastructure which is in dire need of rehabilitation and expansion. In addition, there used to be a well-established manufacturing sector which was able to provide a substantial proportion of mining inputs, which needs to be reactivated.
4. CONCLUSIONS & RECOMMENDATIONS

4.1 MINERALS GOVERNANCE

The current “free-mining” (FIFA) colonial mineral regime is inappropriate for using mineral assets to underpin wider development and industrialisation and consequently consideration should be given to the following proposals on the administration of national mineral assets:

1. Streamline (simplify) MMA to cater for exploration licenses and ASM prospecting licences, ASM leases and Mining Leases on a use-it-lose-it principle. Shift the detailed procedures and modalities to attendant MMA Regulations;
2. Amend the MMA to cater for a hybrid FIFA (claims) and public tender system ("known" and “unknown” mineral resource terrains) and to cover back/forward linkages VA (%) milestones (e.g. at 5, 10, 15, 20y) and a corporate minimum spend on knowledge formation (HRD/R&D) of ≥5% of payroll;
3. Build a mineral deposit public tender (auction) capacity in the MM&MD and ZMDC;
4. Urgently locate funds to establish a functional MCIMS (national mineral cadastre);
5. Rebuild the ASM support “golden triangle” (finance, marketing and technical support);
7. Reconfigure ZGS as a state agency with the ability to re-attract requisite professionals;
8. Resource ZGS to recommence systematic geo-mapping and to categorise the country into known, unknown and partly known mineral resource zones;
9. Capacitate ZMDC and ZGS to develop mineral targets for public tender;
10. Urgently resolve the national power crisis through fast-tracking the current rehabilitation and expansion projects as well as through imports. Power from Mozambique needs to be assessed, both from Cabora Bassa (and, in future, Mpande Nkuwa HEP) as well as from the planned thermal plants based on waste coal from the Tete coalfields (Vale and Rio Tinto).

4.2 FISCAL LINKAGES
Wits MSC

The current mineral fiscal regime neither effectively captures resource rents nor optimises the developmental impact of mineral extraction. Consideration should be given to the following proposals to maximise the capture of resource rents without sterilising resources and whilst still remaining attractive for FDI:

4.2.1 FISCAL REVENUE INSTRUMENTS

1. Corporate Income Tax (CIT): Currently at 25% except for SMLs at 15%. Standardise at 25% (national rate) for all mining;
2. Royalties: Currently 1% - 15% (by mineral). Lower royalties to 1-2% for all minerals. Royalties sterilise resources and encourage high-grading (sub-optimal extraction);
3. Resource Rents Tax (RRT): Currently 0% except for an APT on SMLs at 42.5%. Increase to 50% above a return on investment (ROI) of the treasury long-bond rate plus 7% (ROI >20% until a long-bond is issued);
4. RRT advance: Currently 0%. Consider a 30% RRT advance (against mining workplan) at e.g. MOODCAAA plus about 3%;

4.2.2 ECONOMIC STRATEGY FISCAL INSTRUMENTS

1. Impose a Mineral Export Tax of 1-5% on all unprocessed mineral exports where the next value addition step has been independently shown to be economically viable (real IRR >10%);
2. Establish a ring-fenced Fiscal Stabilisation Fund using 30% of the proceeds of the RRT (locked offshore fund);
3. Establish a ring-fenced Minerals Development Fund using remainder of the proceeds of the RRT, ex the RRT advance;
4. Make a local minerals HRD/R&D spend of ≥5% of pay-roll a condition in all Mining Leases;
5. Reduce the Withholding Tax on expatriated dividends to 15%, but increase to 30% for investors domiciled in tax havens;
6. Abolish the practice of permitting the retention of mineral rights against the payment of Retention Fees (use-it-or-lose-it principle);
7. Impose a requirement for a 5-yearly “Forensic Tax Self-Audit” in all Mining Leases with revenue exceeding $200mn/an. The audit should be undertaken by a reputable
audit company selected from a list of four supplied by Zimra and should be financed by the mine, but report to Zimra;

8. Impose a Capital Gains Tax (CGT) of 50% on all Exploration License transfers (sale before mining commences) to discourage speculators;

9. Clarify the Indigenisation Policy by making the targets 25% by year 10 and 51% by year 25 (i.e. any Mining Lease renewal (at 25 years) must be conditional on 51% beneficial ownership by indigenous Zimbabweans).

4.3 BACKWARD LINKAGES:

Building the seminal minerals backward (upstream) linkages activities is crucial to using the national mineral resource endowment to underpin wider industrialisation. In this regard the following proposed interventions should be assessed:

1. Resolution of the power constraints through the rehab of existing capacity, the fast-tracking of expansion projects, new projects and imports;

2. Amend the MMA152 to include upstream value addition (backward linkages: local content) as a clear objective of the Act and strengthen the Minister’s power to include such conditions in the mining concession/lease. This could be done through the development of clear local content milestones (5, 10, 15 year targets) for all mining concession contracts (leases) in order to maximise local value addition. The concession contract (lease) should make it clear that failure to achieve the asset owner’s targets could result in a suspension of the contract and that, after a rectification period, the asset will be re-concessioned (auctioned against developmental criteria). Once a new MMA is in place all current licenses should be revisited to include such local content milestones (and the new Act should cater for this);

3. Make local content commitments a bid variable with significant weighting for all new competitively tendered mineral concessions (auctions);

4. Consideration could be given to expanding the Indigenisation Law to cover purchases from indigenous suppliers153, based on indigenous proportion of local

152 MMA: Mines and Minerals Act
153 The South African BEE supplier experience could be useful in this regard.
value added in the goods or services supplied, rather than the total value of the
goods or services, to facilitate backward linkages;

5. Task the Ministries of Industry and Commerce, of Economic Planning and
Investment Promotion, of Mines and Mining Development and of Science and
Technology with developing and implementing comprehensive industrial sub-
sectoral strategies to grow the mineral upstream sectors (capital goods, services,
consumables) including the use of instruments such as import tariffs, investment
incentives, innovation stimuli, market access, access to finance, competitive
feedstocks, etc.

6. Task the ZMDC with developing appropriate local mining capital goods, with the
private sector and technology institutions, to overcome the technological
challenges of the minerals sector and to improve health and safety of workers.

7. Establish a Minerals Sector Knowledge Fund in partnership with the mining
industry, through an obligatory spend of ≥5% of payroll on local HRD and R&D, to
rebuild the backward linkages skills and technology development capacity.

4.4 FORWARD (DOWNSTREAM) LINKAGES

Minerals and mineral products constitute critical feedstocks into a wide range of
downstream sectors such as manufacturing, agriculture and infrastructure. In this
regard the following proposals warrant further consideration:

1. Ensure competitive local prices (EPP) of strategic mineral feedstocks into
manufacturing, infrastructure, energy, agriculture;

2. Resolve the debilitating power constraint through investments into power
generation and through imports, including the temporary permitting of direct imports
by mineral beneficiators;

3. Harmonise mineral production and industrial strategies through strong coordination
of Ministries of Mines and of Industry, of Agriculture, etc.

4. Introduce beneficiation milestones in mining leases at 5, 10, 15 and 20 years and
make downstream value addition a bid variable for all new competitively tendered
mineral concessions;

5. Impose a small export tariff (<5%) on select raw mineral exports to encourage
beneficiation (where independently shown to be viable).

6. The viability of a PGM refinery should be independently assessed and, if positive,
an export tax on unrefined PGMs should be considered;
7. The viability of a stainless steel slab plant should be independently assessed and, if positive, an export tax on ferrochrome and nickel exports should be considered;
8. Establish new steel producers (Mwanesi?) to sell at EPP in the domestic market;
9. Investigate the viability of establishing a plant to produce petrochemicals (particularly polymers) and fertilisers from coal/gas resources;
10. Ban all scrap metal exports (reserve for domestic use);
11. Producer Power - PGMs: Amend the Gold Trade Act to also require PGM Authorised Dealers and engage the government of South Africa on the feasibility of collaborating on the marketing of PGMs and growing downstream industries;
12. Enlarge the local market through equitable regional integration (SADC, SACU, CMA);
13. Support beneficiation technology and skills development (Knowledge Fund).

4.5 KNOWLEDGE LINKAGES

Establishing the minerals knowledge linkages (skills and technology development) is critical to developing the back/forward linkages. In this regard the following proposals should be considered:

1) The reinforcement of the National Migration Management and Diaspora Policy to include the location of skilled Zimbabweans in the diaspora and instruments to facilitate their return such as assisted relocation and remuneration subventions for critical scarce skills;
2) Investigate the conversion of tertiary state training costs into notional loan to be worked off over 15 years by working in-country (coverts to real loan if graduate exits before year 15);
3) The introduction of minimum minerals knowledge corporate spend of 5% of payroll to fund skills formation for the minerals sector and back/forward linkage industries, as well as local technology development. The South African Mining Charter targets HRD expenditure of 5% of pay-roll by 2014. Including the 1% National Skills Levy, this comes to 6% of the company’s pay-roll;
4) Rebuild mineral technology development institutions (IMR, GML, BSM, Universities, et al);

www.dmr.gov.za/mining-charter.html
5) Use of a portion of the proposed RRT to fund:
 a) The training and remuneration of Maths and Science specialists to assist in Maths and Science Education in primary schools across the country where such need is identified. The precise mechanism for implementing this should be worked out in consultation with the Ministry of Education,
 b) Grants/loans for Engineering and Science students to be administered through the Universities. Tertiary training should be free in critical technical areas;
 c) Financial support to Engineering Faculties based on the number of undergraduate students graduating and registering with the Engineering Council of Zimbabwe (ECZ), as well as financial support to Engineering Faculties for post-graduate studies.
 d) Grants for Engineering and Technician learnerships.

6) However, it may be advisable to first carry out a survey of the critical minerals technical skills needs and to then develop a HRD strategy with government. Such a plan might best be resourced by establishing a National Minerals Skills Fund, together with the GoZ and the mining industry, funded in part by the Mineral Knowledge Corporate Spend (5% of payroll).

7) Investigate the establishment of a dedicated Minerals Technology Fund (MTF) as a PPP with the mining industry, pedagogical institutions and state enterprises (ZMDC) and institutions.

4.6 SPATIAL LINKAGES

Mineral endowments can have significant spatial linkages both through the development of local communities (LED) and the collateral use of mineral infrastructure (transport, power, water) by other sectors. In this regard the following interventions should be considered:

1. Stipulate third party access at non-discriminatory prices to all mineral infrastructure, as well as obligatory reasonable over-capacity, to cater for other users;
2. Make investment in excess infrastructure capacity a bidding criteria for all public tenders of mineral assets;
3. Permit coal/gas extraction companies to establish IPPs (independent Power Producers) to supply ZESA at reasonable (cost plus) tariffs;
4. Oblige all Mining Lease holders to establish CSI (Corporate Social Investment) programmes in the surrounding communities and to report on them annually;

5. Concession future mineral export rail corridors to the users for the minimum viable concession period, with third party access at non-discriminatory prices and minimum excess capacity for other users;

6. Establish a Mwanesi SDI based on the huge Mwanesi iron ore resource, through the public tender of the resource that selects the investment partner that maximises the spatial (infrastructure) impacts as well as the other linkages. This should be done together with the government of Mozambique to give the Zimbabwean economy a low-cost logistics corridor to the coast and the global economy.

7. Assess the viability of a second heavy-haul corridor for coal exports (possibly to Maputo-Matola-Techobanine) and the case for a second SDI with Mozambique.

4.7 REGIONAL INTEGRATION

Zimbabwe is a founder member of the SADC (Southern African Development Community) which has a combined GDP of over one trillion US dollars (about 60% South Africa). This presents a substantial regional market for beneficiated products (forward linkages), mining and mineral processing inputs (backward linkages) and mineral sector skills and skills formation (knowledge linkages). As a landlocked country, Zimbabwe is inherently dependent on the region for its international trade infrastructure (spatial linkages) and the region could offer lower cost energy supply solutions through the SAPP (Southern African Power Pool) which are already being exploited (hydro-power from Mozambique- HCB155). Regional cooperation in mineral taxes configuration and collection could enhance the fiscal linkages.

Consequently, the deepening of equitable regional integration should be a key element of a future Minerals Development Policy. In this regard the efficacy of joining the SACU (Southern African Customs Union) and the CMA (Common Monetary Area) should be assessed (the ZAR is already legal tender, together with the USD).

4.8 CONCLUSION

155 HCB: Hidroelectrica Cabora Bassa
Finally, Zimbabwe’s mineral endowment could not only underpin the rebuilding of the economy, but could also catalyse wider industrialisation, growth and sustainable development. However, this will not necessarily happen under the current “free-mining” mineral regime with limited mining lease conditions. The mineral regime needs to be substantially overhauled to facilitate the maximisation of the developmental impact of finite resources on this and future generations, through ensuring that all the attendant economic linkage opportunities are realised. In the short term the most important constraint facing the industry is the national power shortage which needs to be urgently resolved.
5. FUTURE RESEARCH AGENDA

This study has highlighted numerous areas/issues that require further investigation and assessment in order to provide policy makers with evidence-based analysis to guide policy reforms that will maximize the mining sector’s contribution to the economy. These include:

5.1 ON MINERALS GOVERNANCE

Project 0: Development of a new Minerals Development Policy: This is underway and public hearings on the draft were held in 2013. The DRAFT Minerals Development Policy is presented in Appendix 7.7 and covers, at a high level, most of the recommendations of this study156.

Project 1: Legal and mineral economics research to simplify the mineral legislation (rework the MMA) to legislate for four basic mineral rights (licenses or leases): (1) An Exploration License (2) A Small-scale Prospecting Licences, (3) A Small-scale Mining Lease (ASM) and (4) A Mining Lease. This research should also propose amendments to the MMA to cater for a hybrid FIFA (claims) and public tender system over “known” and “unknown” mineral resource terrains, respectively and amendments to facilitate greater backward and forward linkages value addition and a minimum lease-holder spend on local knowledge formation;

Project 2: Research on best-practice in the public tender of state assets (PPPs) and the optimal location and configuration of such capacity within the state administration;

Project 3: Research into global best-practices in supporting responsible artisanal and small-scale mining (ASM) and proposals on how to rebuild and expand the previous ASM support “golden triangle” (finance, marketing and technical support);

Project 4: Financial Research on the optimum methods of resourcing and configuring an ASM venture capital fund (VCF), together with the COMZ, donors, et al, with a special window for female ASM;

Project 5: Research on the reconfiguration of the Geological Survey (ZGS) as a state agency with the ability to re-attract requisite professionals, and methods of resourcing and organising the ZGS to undertake systematic geo-mapping, to categorise the

156 Download at www.mines.gov.zw
country into known, unknown and partly known mineral resource zones and to develop mineral targets, arising out of the geo-mapping, for public tender. Reconfiguration of IMR and Government Metallurgical Laboratory to support state capacity in knowledge generation, R&D;

Project 6: Research on the role of the state mining company (ZIMDC) in facilitating both mining and mineral linkages, including proposals on its shareholder mandate, its reconfiguration to realise the mandate and the active role of the state in mineral extraction.

5.2 ON MINERAL FISCAL ISSUES

Project 1: Econometric research on the probable impacts of all the fiscal proposals contained in this report, particularly the forecast impact on fiscal revenues (for various price and production scenarios). This research should also cover proposals on the fine-tuning of the recommended instruments and the building of the requisite state capacity to effectively administer the new mineral fiscal regime.

Project 2: Research on global best-practice in establishing (configuring) and managing a Sovereign Wealth Fund, with dedicated windows for an Infrastructure Fund, Fiscal Stabilisation Fund and a Minerals Development Fund. It should include global experiences in successfully protecting the fund from being accessed for short-term contingencies.

Project 3: Research on optimal revenue collection and management approaches including developing frameworks for optimal utilisation and management of community development funds

Project 4: Research on the impact of international trade practices including tariff and non-tariff barriers (tariff escalation) on the exports of value-added mineral products

5.3 ON BACKWARD LINKAGES:

Project 1: Research on global experiences in developing the resources extraction and processing supplier clusters, including the best instruments for facilitating such development (both carrots and sticks) and an analysis of the minerals inputs supply-chains. The research should identify critical missing links in such chains and recommend strategies for their establishment;

5.4 ON FORWARD LINKAGES:
Wits MSC

Project 1: Techno-economics research on global best practice in facilitation minerals value addition, including an assessment the most efficient instruments, such as judicious export taxes. The research should also assess the viability of establishing the following beneficiation plants: a PGM refinery, a coal/gas based petrochemicals plant and export-based iron/steel and stainless steel plants;

Project 2: Research on producer bodies and their efficacy, including the possibility of creating a regional PGM marketing body together with South Africa to facilitate the location of downstream industries in the two states. Similar studies on diamonds could be undertaken especially with the advances which Botswana has made and Zimbabwe’s infant diamond industry could learn from that model

5.5 ON KNOWLEDGE LINKAGES:

Project 1: Research into global best-practice in rapidly upgrading the national technical skills pipeline (engineers, scientists and technicians/ artisans), including the optimal interventions to effect such an expansion of the national technical skills complement;

Project 2: Research onto the creation a robust Zimbabwean mining and mineral processing technology development capacity, including instruments and interventions to realise this;

5.6 ON SPATIAL LINKAGES:

Project 1: An assessment of the viability of both an iron ore (Mwanesi) based SDI and a coal resource based SDI, to the Mozambican coast, including all the possible collateral impacts on other sectors.

Project 2: Assessment of options for the import of power from Mozambique, both HEP157 (from Cabora Bassa and, in future, Mpande Nkuwa) as well as from the planned thermal plants based on waste coal from the Tete coalfields (Vale and Rio Tinto), including the efficacy of Zesa partnering (JV) on the thermal plants (their waste coal supply costs are likely to be significantly lower than domestic plants resulting in lower electricity costs).

157 HEP: Hydro-electric Power
Wits MSC

Project 2: Research on sustainable socio-economic development strategies in mining areas, including the development of a template for CSR programmes, community involvement, resettlement approaches, compensation templates, etc.
6. REFERENCES

ANC 2012, “Maximising the developmental impact of the people’s mineral assets: State Intervention in the Minerals Sector (SIMS)”,

Arezki and van Der Ploeg 2007. “Can the natural resource curse be turned into a blessing? The role of trade policies and institutions”, Rabah Arezki and Frederick van der Ploeg, CEPR Discussion Paper No 6225;

Wits MSC
University, Canada
(www.queensu.ca/samp/sampresources/samppublications/policyseries/Acrobat59.pdf)

Deloitte 2012 “Overview of Current Tax System with comparison to SADC” ppt, Deloitte School of Tax, Deloitte and Touche, Breakfast Seminar, 4 April 2012, Harare.

Edigheji, Omano (Editor); “Constructing a Democratic Developmental State In South Africa”, HSRC Press, 2010;

FAO “World agriculture: towards 2015/30”, p27,

Jourdan 2012a, “Waterberg Coalfields link to the proposed Techobanine port- The case for a regional Development Corridor”, in “Waterberg Development Options”, by Dr Z Rustomjee, for Genesis Analytics, Joburg.

Mining Journal Supplement, Feb 2009, “Finland”

Mining Royalties

Van der Ploeg, Frederick, 2007, “Challenges and opportunities for resource rich economies”, European University Institute, Florence, Oxcarre, Oxford University, University of Amsterdam, Revised 31 May 2007;

Van Straaten, Peter 2002 “Rocks for Crops: Agrominerals of Sub-Saharan Africa”, University of Guelph (www.uoguelph.ca/~geology/rocks_for_crops/56zimbabwe.PDF)

Walker M, 2005: “Unpacking the nature of demand and supply relationships in the mining capital goods and services cluster: The case of PGMs”, Corporate Strategy and Industrial Development (CSID) Research Programme, School of Economics and Business Sciences, University of the Witwatersrand.

World Bank 2012 “Communities and Small-scale Mining” grant system http://go.worldbank.org/6OCES521R0

7. APPENDICES

7.1 APPENDIX 1: HISTORY OF MINING IN SOUTHERN AFRICA

Southern Africa is one of the only areas on earth that contains a complete history of mining, going back to pre *Homo sapiens*, and continuing with the first human workings through to the first underground mines, on to iron age mining and finally colonial commercial mining.

It contains evidence of some of the very earliest use of minerals in the form of stone tools by pre-humans, *Homo habilis*, at for example Sterkfontein and Kromdraai (1.7 - 2 million years BP). These are arguably represent the earliest recorded “quarrying” by hominids.

The first use of minerals by Homo Sapiens is probably the recent discovery at Pinnacle Point (Mossel Bay) of the heat treatment of rock (silcrete) to harden it for the making of microlith (flake) tools (80 -150 000 years BP) constituting the first human heat treatment.

An engraved plaque of ochre (hematite) was found at Blombos Cave (near George in SA), dated at 75 000 years BP and is the first evidence of human art or possibly writing, though the meaning of the striations is unknown.

The first known underground mine is at Lion Cavern (Ngwenya) in Swaziland (20 000 - 43 000 years BP) where the ancestors of the San people mine iron oxides for ochre for rock painting. This deposit was later mined commercially by Anglo American in the 60s and 70s (Ngwenya Mine) and the iron ore was exported.

158 Compiled by author
from Maputo on the Goba railway line. The early San ("Bushman") hunter-gatherers
did not possess smelting technology but did exploit fine grained, glassy, rocks such as
obsidian and chalcedony for the manufacture of stone implements and weapons.
Various iron oxide ochres were also used for painting. It was not until the arrival of the
Bantu-speaking iron age cultures that the mining and smelting of iron began. Ancient
smelting sites, usually identified by slag heaps and tuyer shards, are to be found right
across Zimbabwe, the earliest of which has been dated as the 2nd Century.

By the 11th Century these people had developed more elaborate forms of social
organisation that also included a substantial mining and smelting industry based on
other metals such as gold, copper and tin. In 922 an Arab traveller, al-Mas’udi of
Baghdad, visited Sofala, on the Mozambican coast, and reported a large trade in gold
and ivory coming from a kingdom in the interior (Zimbabwe) at that time already. From
the 11th Century onwards, gold from Zimbabwe was carried by Arab and Swahili
traders from the southern African coast to the Arab world and on to the Indian and
Asian markets.

The construction of the spectacular stone buildings of Great Zimbabwe, at the time the
largest city in sub-Saharan Africa, which took place from the 13th to the 15th Centuries,
could well have been related to the dramatic increase in wealth from the thriving gold
mining industry at this time. It has been estimated that there exist about 4000 ancient
gold workings and about 500 ancient copper workings in Zimbabwe, Mozambique and
Botswana, mainly in Zimbabwe on the Achaean schistbelts, principally dating from this
period.

Under a Rozvi chief called Mutota, the Munhumutapa (meaning "pillager") Empire was
built in the first half of the 15th Century and it split into two at the end of the 15th
Century: the Munhumutapa in the north and the Changamire in the south. Both of these
groupings controlled numerous shallow gold mines principally in the schistbelts
(goldbelts) which occur right across the country.

The rise of mercantile capitalism in Europe brought the Portuguese in the 16th Century,
in search of gold, copper and slaves, who sought to replace the lucrative Arab-African
trade that had been in existence since before the 10th Century. The Munhumutapa
allowed their penetration in the north, but the Changamire refused them entry to the
southern region.
In 1573 the Munhumutapa granted the Portuguese mining rights, for gold and other minerals, in northern Zimbabwe and Mozambique. In the late 1620's the Portuguese launched two military campaigns against the Munhumutapa state and installed a puppet Munhumutapa. At the end of the 17th Century the Changamires managed to throw the Portuguese and their puppet Munhumutapa off the Plateau and install a northern vassal kingdom. The Changamires dominated the gold mining industry and gold trade, via the Sabi/Save valley to the coast, until they were routed by the Nguni (Ndebele) invasion under Mzilikazi in the 1840's, fleeing the Boer expansion into the Transvaal.

The 19th Century European explorers such as David Livingstone and Karl Mauch encountered wide evidence of the earlier thriving gold mining industry. In the 1880's the Cape diamond and gold mining magnate, Cecil John Rhodes, sent representatives to the Ndebele capital, Bulawayo, to obtain mineral concessions. In 1889 Rhodes floated the British South African Company (BSAC) and obtained a Royal Charter to install an administration over the Zambezi territories. This was done to contain the Boers south of the Limpopo and because the reputation of the Munhumutapa gold fields had led Rhodes to believe that present day Zimbabwe contained gold deposits to rival the Witwatersrand.

Iron and copper mining and smelting appears from c. 200 AD and there are thousands of iron smelting sites across southern Africa!

The photo depicts a Venda-type iron smelting furnace in 1888. The manufacture of traditional iron products (axe heads, hoes, arrow heads, assegais, etc) continued up till the 1950's. The numerous Hwedza hill iron furnaces in Zimbabwe were described by early colonists as the “Sheffield of Africa”.

Some Ancient Base Metal Mining Sites in Zimbabwe and SA
Gold trade via the eastern seaboard to the Middle East and Asia well-established by c. 900 AD and gold was an important commodity in the Mapungubwe (c. 1220 - 1270) and Zimbabwe/Munhumutapa states where numerous gold artefacts have been found in numerous sites.

Many of these sites also contain Asian trade goods and gold and ivory where traded with the east via the Dhow trade up the east coast of southern Africa to the Middle East and beyond. Items of Ming Dynasty ceramics have been found at Mapungubwe. The Mapungubwe state was probably a precursor of the ancient Zimbabwe (Munhumutapa) state with extensive gold mining. There are over 4000 ancient gold mines and workings.
in southern Africa, predominantly in Zimbabwe and northern SA (Limpopo Province). Although Great Zimbabwe is not close to the local gold seam, its power derived from controlling the trade in gold. During this period mine shafts were sunk to a depth of 100 feet and complex mining methods were used including ventilation shafts and fracturing the rock face with fires.

Copper was mined at Phalaborwa and Mussina (on Zimbabwe-SA border) and “the earliest South African example of a shaft, gallery, or adit was found at Lolwe Hill, Phalaborwa, where ancient miners sought malachite and azurite (the site is now the location of a large open pit mine). A shaft 6 metres in depth with a 10 metres horizontal gallery was dated at AD 770”160. It is possible that these technologies were later applied in Zimbabwe, where similar mining methods were used at a later date.

The Rooiberg tin mines (SA, Limpopo Province) operated from the 15th to the 17th Century and the Mussina copper deposits were probably mined from the 10th Century, but unfortunately the early workings were destroyed by the European miners at the start of the 20th Century161.

With the rounding of the Cape by Barlowmeu Dias in 1488 and the subsequent sacking of the east coast island city-states (Kilwa, Mocambique, Zanzibar, etc.) by the Portuguese “conquistadores”, their attention turned to the main source of the gold—the Munhumutapa (Zimbabwe) state. After two unsuccessful campaigns the Portuguese finally managed to subjugate it and install a puppet Munhumutapa, but the fabled gold was illusive, as it was spread over thousands of ancient workings in the Goldbelts (Greenstone Belts) and there is no record of substantial plunder accruing to the invaders.162 By the 18th Century the Portuguese had lost their grip on the ancient Zimbabwe state and the remnants survived as numerous chieftaincies and polities, with minor gold mining activities.

\begin{footnotes}
\item[160] Hammel, A. et al “Pre-colonial mining in southern Africa”, Journal of the SAIMM, Jan/Feb 2000, p52
\item[162] Summers, 1969, op cit
\end{footnotes}
The invasion of the Cape by the Dutch East India Company (VOC) in 1652 heralded the start of the systematic dispossession of indigenous southern Africans of their land, minerals and liberty. However, in the hinterland, “...by the time the European settler community arrived in the region almost every gold-bearing quartz outcrop had already been worked, nearly every viable outcrop of copper-bearing rock had been exploited, and hardly a tin lode of any importance was left untouched” by the indigenous miners.163

“European colonization was the ultimate constraint on these indigenous operations as imported goods rapidly undermined the value of traditionally produced goods and local mining declined dramatically. Although much of the evidence of pre-colonial mining has since been destroyed by modern mining operations, recent research has started to balance the colonial-oriented version of history with information regarding the achievements of indigenous miners and smelters—from whom, it seems, there is a lot to learn”164

The European “discovery” of diamonds in Griqualand in the 1860s led to the first southern African diamond “rush” by European opportunists from all over the globe, but the local inhabitants were denied diamond claims and relegated to the role of labourers for the invaders. This was repeated for gold in the Barberton Mountain Lands and Sabie (Pilgrims Rest) in the 1870s and later, when the world’s largest gold formation, the reefs of Witwatersrand System, was exploited by the European plunderers.

Unlike Sabie and Barberton, the European “discovery” of the Wits main reef gold conglomerate on Langlaagte Farm (near Johannesburg) in 1886 did not precipitate the usual “gold rush” of European fortune seekers, due to the massive capital requirement to develop deep underground gold mines.

The discovery of diamonds at Kimberley in 1871 had already generated substantial capital from British and European banks to finance the new diamond mining houses started by colonists Cecil Rhodes, Alfred Beit and Barney Barnato and others, who eventually came together to form De Beers. Diamond capital was consequently

163 Hammel, et al “Pre-colonial mining in southern Africa”, Journal of the SAIMM, Jan/Feb 2000, p54
164 Hammel, et al “Pre-colonial mining in southern Africa”, Journal of the SAIMM, Jan/Feb 2000, p54
available to mine the Wits gold. However, Rhodes “…wants this wealth for a very specific purpose. It is needed to fulfil his dream of establishing British colonies north of the Transvaal, as the first step towards his ultimate grand vision - a continuous strip of British Empire from the Cape to the mouth of the Nile.”

Cecil Rhodes, was an unscrupulous British imperialist and founded Gold Fields of South Africa (GFSA) in 1887 and the British South Africa Company (BSAC) in 1889, through the merging of the Central Search Association and the Exploring Company Ltd., which received a royal charter from the British imperial government in 1889. “Modelling the BSAC on the British East India Company, Rhodes hoped it would enable colonisation and economic exploitation across much of south-central Africa, as part of the Scramble for Africa”. He “…bought the Rudd Concession from King Lobengula ostensibly for mining purposes, but he brought an army and settled at present day Harare in 1890. Thereafter, Rhodes declared war on Lobengula and overthrew him and named the country Rhodesia. As a British colony, Rhodesia was characterized by:

1) A massive land grab exercise, which drove thousands of Africans, often at gunpoint, from 50% of the country into reservations, now called communal lands. Land was taken without compensation to the owner and given to Rhodesia's soldiers, or later to veterans of the two world wars of the 20th century, or to any white settler, but not to black persons. This racial land division was consolidated by the Land Apportionment Act of 1930 and the Land Tenure Act of 1969, which prohibited blacks to own land in white areas.

2) The exclusion of Africans from the political process. Africans were denied the right to vote or stand for parliament, or to hold high office in the army, police or public service.

3) Africans were excluded from the best schools, residential areas, and other amenities, which were reserved for whites only. Rhodesia was a mirror image of the apartheid policy, which then prevailed in South Africa.”

The European settlers took control of Rhodesia in 1923 when it became a settler self-governing British imperial crown colony. Subsequently European opportunists and adventurers poured in to exploit the country’s rich natural resources and cheap subjugated local labour and the mining sector boomed with the opening of numerous mines, mainly based on ancient workings. The non-African alien population rose rapidly from 32,000 in 1923 to 220,000 by 1953 when the settlers extended their resource base through the formation of the Federation of Southern Rhodesia, Northern Rhodesia (Zambia) and Nyasaland (Malawi).

“The intended economic benefits materialized during the early years of the federation, helped by a world rise in copper prices, but this [was] not enough to stifle increasing political unrest - particularly as British colonies elsewhere in Africa win independence (beginning with Ghana in 1957).

In the early 1960s African politicians in Northern Rhodesia and Nyasaland win increasing power in their legislative councils. The pressure grows to break up the federation. In March 1963, by which time all three colonies are demanding independence, the British government finally concedes. The Federation is formally dissolved on 31 December 1963.”

Immediately after the dissolution of the Federation a white supremacist party (Rhodesian Front) took control of the Rhodesian settler government and threw the nationalist leaders into detention. In 1965 it declared UDI (Unilateral Declaration of Independence) from the British Empire. Limited sanctions were applied but were generally ineffective due to support to the settler government by the apartheid regime in South Africa.

The nationalist guerrilla war of liberation started in earnest in the early 70s, but did not have an appreciable impact on mineral output. By 1980 the white supremacist government capitulated and the country finally became an independent democracy.

167 History World, op cit
Box: Geology & History

“The Zimbabwe Geological Survey (1990) identifies more than 500 individual deposits of base metal and industrial minerals in Zimbabwe. It describes Zimbabwe as ‘an important producer’ of gold, chrome, lithium asbestos and caesium, as well as high-quality emeralds. Modern mining began in 1892 and by 1990 over 40 minerals were being exploited. Over the first 100 years of modern mining activity, the two most valuable products by far were gold and asbestos but this has changed with the emergence of nickel and ferrochrome as major exports and, very recently, the exploitation of platinum group metals – platinum, palladium and rhodium.

Most mineral production is from the ancient Archaean core of the country where most deposits are concentrated in the greenstone belts that contain gold, copper, tungsten, antimony and arsenic. Nickel with its by-products of copper and cobalt is also mined in the greenstone belts, while asbestos deposits are found in the serpentized ultramafic intrusions. There are known huge resources of chromeite and platinum along the Great Dyke that runs through the centre of the country from northeast to south-west. Initially mining in Zimbabwe centred on the exploration and exploitation of gold deposits almost all of which were known from ancient workings.

Subsequently, world class deposits of chromeite and chrysotile asbestos were developed, along with Hwange coal. The Zimbabwe Iron and Steel Co (ZISCO) (as it is now known) was built to produce iron, steel and coke, while two major ferrochrome projects were developed, Zimbabwe Alloys, producing low carbon ferrochrome and Zimasco, which manufactures high carbon ferrochrome. Subsequently, an ammonium nitrate plant was opened at Zisco to produce oxygen-refined steel, while a large open-cast coal mine was developed at Hwange for coking coal and for steam coal to fire the Hwange Thermal Power Station.

Copper deposits were exploited by MTD Mangula and the Empress nickel deposit, discovered in 1956, was brought into production along with other nickel properties (Trojan, Shangani, Epoch and Madziwa in the 1960s and early 1970s). Two nickel deposits at Hunters Road and Damba-Siwlane remain dormant. The Empress Nickel mine has closed but the refinery still operates for toll treatment of matte from the BCL mine in Botswana. Small open-cast mines were opened at Buchwa and Ripple Creek for iron ore, and at Dorowa for phosphate, along with a number of open-cast gold mines using extraction by heap-leaching.

Since 2000 however, a number of mines have closed, including the copper producers at Mangula, Alaska and Sanyati and the Epoch and Madziwa nickel mines. The Railway Block high-grade chromite mine has closed as well as the Dalny-Venice-What Cheer group of gold producers and the smaller Gaika, Motapa and Royal Family gold mines.

The original BHP Platinum mine at Selous, which opened in the late 1990s, was closed when the Australian mining company disinvested. The plant was subsequently restructured for the open-cast mining at Ngezi, while most recently diamond pipes at Murowa (the Rio Tinto group) and River Ranch have been mined on a small scale along with alluvial diamonds at Marange. All existing mines operate under constraints – most notably the exchange rate, which has decimated gold production, and shortages of power, skills, ore and low sulphur coal required by the ferrochrome sector. Major expansion potential exists in the platinum industry with new underground mines at Unki (Anglo American), Ngesi (Impala Platinum) and Mimosa.

The Zimbabwe Geological Survey (1990) lists no fewer than 66 base and industrial mineral deposits found in Zimbabwe but in recent years production has become increasingly concentrated to the point where in 2006 seven products accounted for 98 percent of total value. In part, this growing concentration reflects price movements – the boom in gold and platinum prices – along with a shift in the composition of output towards higher value and value-added minerals, such as PGMs and ferrochrome. Geological assessments suggest that underinvestment in exploration and production, and not mineral potential, have been the main factors limiting mining development in Zimbabwe. This is not a new phenomenon and pre-dates the onset of the political and economic crisis at the end of the 1990s. As long ago as 1992, the World Bank identified Zimbabwe, along with the DRC and Namibia, as ‘Category A’ countries requiring the highest level of exploration investment amongst African states of US$100 million over a five-year period ($20 million annually). In all three countries mining exploration had been constrained by political and economic uncertainty with mining houses reluctant to invest in a country with a track record of policy unpredictability, especially in terms of property rights and exchange-rate management.”

7.2 APPENDIX 2: EXTRACT FROM STERP: MINING

(Short Term Emergency Recovery Programme (STERP) Getting Zimbabwe Moving Again, 2009, page 43)

Mining

136. The mining sector, a major earner of foreign currency, has been performing below its potential. Its recovery, taking account of the diverse mineral resource base, will be underpinned by various interventions over the coming year.

137. Raising the capacity in mineral production, continuous exploration as well as beneficiation and value addition of minerals will benefit from joint venture strategic partners who have the necessary technology and foreign currency back-up.

138. To ensure full exploitation of mineral resources, The Inclusive Government is reviewing the framework for mining rights, pricing of minerals and surrender requirements. The Mines and Minerals Act will also be amended to facilitate review of surface rentals, discourage hoarding and speculating in Exclusive Prospecting Orders.

139. There are structural deficiencies in respect of the register of all known minerals in Zimbabwe and their stock thereof. This is largely due to the absence of a clear exploration policy and the related issue of extraction. Quite clearly, there is a legislative deficiency in the above areas, a situation that has created rampant abuse of our scarce resources.

140. STERP will thus oversee the crafting of an Exploration, Registration and Extraction Mining Policy which will form the basis for a new comprehensive mining sector legislation. Under this overall Mining Policy, there will be separation of exploration from extraction policies and strategies.

141. Furthermore, The Inclusive Government will explore the establishment of an institution responsible for exploration issues including collecting and building a comprehensive database on quantity and quality of the country’s mineral endowment.

Pricing of Minerals

142. A key component of STERP in reviving the mining sector will be to ensure that international commodity prices are levied and received by mining houses. In short, the pricing gap in respect of which domestic prices lagged behind international prices is a thing of the past.
143. Consistent with this policy, no more retention on commodity earnings will be made by any authority in Zimbabwe. However, as quid pro quo the Inclusive Government will review upwardly the taxation and royalty structures in line with international standards.

144. Equally, there will be greater demand made on mining houses on protecting of the environment. Furthermore, while the STERP will be allowing flexibility in marketing of minerals, The Inclusive Government is imposing social development obligations on mining houses.

Marketing of Minerals

145. To enhance value, the marketing of all minerals other than Gold will be done under the supervision of the Ministry of Mines and Mining Development together with the Minerals Marketing Corporation of Zimbabwe, a Board established through an Act of Parliament.

146. In the case of Gold, the same will remain a strategic reserve asset, whose licensing and marketing will be in terms of the Gold Trade Act. However international prices will still have to be paid to producers and no amount will be retained by the Reserve Bank.

147. Similarly, as in the case of other commodities, the Inclusive Government will review upwardly the taxation and royalty levels and structures.

148. Special attention will also be given to the small to medium gold producers. In this regard, a special facility will be created for the provision of short term finance and assistance.

149. To the extent that steel is not a mineral but an industrial product, STERP will take measures to ensure that its marketing thereof is done exclusively by the producer and not MMCZ.

150. In respect of outstanding amounts owed by the Reserve Bank to mining houses, these will be assessed and evaluated to establish authenticity and to ensure that repayments are done by the same within a reasonable time.

Amendment of the Mines & Minerals Act

151. To ensure full exploitation of minerals resources, The Inclusive Government will expedite the amendment to the Mines and Minerals Act, which is already before Parliament. The Act seeks to review the framework for mining rights, with a view of
reviewing the mining title system, discourage hoarding of claims which are not being worked, and reforming the Mining Affairs Board.

Minerals Value Addition

152. The contribution of mining to the revival of the economy is limited by the low level of beneficiation and value addition to our mineral resources.

153. Initiatives to increase beneficiation and value addition for all major minerals including gold, platinum, nickel, copper, coal, coke, and other various non-ferrous ores and concentrate are being undertaken.

154. This will include penalties for the exportation of raw minerals where value addition options are readily available.

Precious Metals

155. Presently, virtually all diamonds, emeralds and semi-precious stones are exported in the raw form, whilst a small percentage of gold is manufactured into jewellery.

156. Concerted efforts will therefore be made to promote beneficiation and value addition programmes in the precious metals sector.

157. This process will take advantage of the existing local gold refinery and mature jewellery industry, which will make it immediately and commercially feasible to add value to our mineral resources.

158. Platinum producers will be urged to enter into local tolling arrangements for smelting, converting and base metal refining so that the country fully benefits from its natural resources.

Base Metals

159. Zimbabwe has the world’s second largest chrome reserves. There is also great potential in expanding ferrochrome production in the country.

160. The Inclusive Government will therefore take advantage of the existing beneficiation facilities to refine all important base metals which include chrome, copper, nickel and iron ore.

161. The Lomagundi Copper Refinery will also be resuscitated to ensure maximum beneficiation of locally produced copper which is currently being exported in concentrate form. The Refinery will further be utilised as a toll Refinery for copper concentrates from Zambia, the Democratic Republic of Congo, Namibia and South Africa.
162. Furthermore, the ban on the exportation of all forms of scrap metal which has encouraged local value addition of base metals will be maintained.

Industrial Minerals

163. Capacity to beneficiate industrial minerals currently remains low. This requires more effort to increase beneficiation capacity in the medium to long term.

164. In the interim, royalty payment levels on all industrial minerals currently being exported in raw form will be increased to encourage exporters to utilise suitable value addition technologies.

Energy Minerals

165. Coal presents the greatest potential for value addition in the energy sub-sector.

166. In this regard, coal mining companies will be instructed to export coke, instead of the traditional coking coal. Punitive measures in the form of increased taxation levels will be imposed for non-compliance.

167. Through availing adequate resources for the use of acquired technologies, the country stands to benefit from increased revenues derived from the by-products of producing coke which include various solvents, tar, and with further processes, petrol and diesel.

168. The bulk of locally produced coal will be devoted to local thermal electricity power generation with the excess power being exported to the sub-region.

169. Furthermore, projects to exploit coal bed methane resources will be pursued.

Small Scale Mining Mechanisation

170. The Programme also provides for mechanisation support for small and medium scale miners with potential to generate substantial mineral exports.

171. The Scheme will be implemented in conjunction with the Mining Industry Loan Fund to assist miners with loans, access to machinery & equipment and technical services to boost production.

172. This therefore entails the recapitalisation of the existing Mining Industry Loan Fund.

173. In this regard, the Ministry of Mines and Mining Development is overseeing the finalisation of the necessary mechanisation strategies with the support of the mining industry.
Zimbabwe’s mining sector plays an important role in the socio-economic development of the country. The sector’s contribution to the economy appears in several forms; inclusive of direct contribution to GDP, employment creation, foreign exchange generation, gross national investment, social infrastructure development and direct contribution to the government revenue. In addition, the sector has direct and indirect downstream (and upstream) multiplier effects to other economic activities. Facts on the ground reveal the mining sector currently constituting 13% of nominal GDP, 50% of the nation’s total exports, 12% of fiscal revenue, 45,000 employment jobs, more than 50% of foreign direct investment, and corporate social investment in agriculture, health, education, housing, and infrastructure.

1. Distribution of the Mining Sector Revenue

Of the approximately USD2 billion revenue generated by the mining sector in 2011, 36% was consumed by purchase of materials, 15% by salaries and wages, 21% by other operating expenditures. The government and the mining companies benefited 17% and 11% respectively as shown in the pie chart below.

Distribution of the mining revenue

Source: Deloitte Tax Study 2012, RBZ, COMZ

The actual dollar distribution of the total mining sector revenue is shown in the abridged schedule below:
Total revenue generated by the sector 2,000

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount ($mn)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total cost of production for the sector</td>
<td></td>
</tr>
<tr>
<td>Total wages paid by the sector</td>
<td>300</td>
</tr>
<tr>
<td>Total supplies and consumables</td>
<td>720</td>
</tr>
<tr>
<td>Other operating expenditures</td>
<td>420</td>
</tr>
<tr>
<td></td>
<td>(1,440)</td>
</tr>
<tr>
<td>Total payments to the government</td>
<td>(340)</td>
</tr>
<tr>
<td>***Total profit for the sector shareholders</td>
<td>220</td>
</tr>
</tbody>
</table>

The figure excludes diamonds; * The figure is a sum total of the profit and loss making companies (i.e. net of loss making mining companies). Source: Deloitte Tax Study 2012, RBZ, COMZ

2. Contribution to GDP

From 1999 to 2008, mining sector contribution to total Gross Domestic Product (GDP) has been averaging about 4%. The contribution grew up phenomenally to average 11% between 2009 and 2011. In 2011 alone mining output is estimated to account 13% of gross domestic product (GDP) directly, although the indirect multiplier effects take the contribution to about 18.4% of GDP in total. The indirect multipliers include backward linkages (e.g. transport, supplies, professional services, etc.), forward linkages (e.g. electricity generation) and the induced effect via mining generated incomes.
Mining contribution to GDP (1995-2015)

Contribution to GDP: sectoral comparison

Regional comparisons: contribution of mining to GDP
3. Contribution to Exports and Foreign Exchange

In terms of foreign exchange earnings per unit of GDP, mining generates the most foreign exchange of the economy. The sector contribution to exports has increased significantly from 20% between 1993 and 2003 to 43% between 2004 and 2011. In 2011 alone the sector contributed USD2.3 billion to national exports, representing far above 50% of the country’s total merchandise exports and the country’s total foreign exchange earnings.

Zimbabwe mining exports (1980-2012)

![Graph showing mining and national exports from 1980 to 2012.]

Sectoral contribution to total exports (1993-2003)

![Pie chart showing sectoral contributions.]

Source: MOF, RBZ

Source: Various Country Statistics
Sectoral contribution to total exports (2004-11)

- Agriculture: 21%
- Mining: 43%
- Manufacturing: 25%
- Others: 11%

Source: MOF

Mining contribution to exports: regional comparison

<table>
<thead>
<tr>
<th>Country</th>
<th>2009</th>
<th>2010</th>
<th>2011 (estimate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA</td>
<td>35.00%</td>
<td>50.00%</td>
<td>55.00%</td>
</tr>
<tr>
<td>Zambia</td>
<td>80%</td>
<td>83%</td>
<td>90%</td>
</tr>
<tr>
<td>Botswana</td>
<td>55%</td>
<td>50%</td>
<td>45%</td>
</tr>
<tr>
<td>SADC</td>
<td>35%</td>
<td>50%</td>
<td>45%</td>
</tr>
<tr>
<td>Zimbabwe</td>
<td>0%</td>
<td>0%</td>
<td>50.00%</td>
</tr>
<tr>
<td>Tanzania</td>
<td>0%</td>
<td>0%</td>
<td>2%</td>
</tr>
<tr>
<td>Angola</td>
<td>0%</td>
<td>0%</td>
<td>2%</td>
</tr>
<tr>
<td>Malawi</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Namibia</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Swaziland</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Source: Various Country Statistics

4. Contribution to Fiscal Revenue

The growth of the sector has seen its contribution to fiscal revenue increasing from 5.78% in 2009 to 7.2% and 12% in 2010 and 2011 respectively.
In 2011 the total tax paid by the mining sector to the government is estimated around US$340 million representing about 12% of the revenue collected by government for the year (2011). If one incorporates alluvial diamond the contribution increases to around 18%. The contribution in various taxes include royalty, corporate income tax, VAT, customs duty, PAYE, Marketing Commissions (MMCZ), capital gains tax, local authority charges, EMA charges, licence fees/registration fees among other charges.

Revenues to the State from mining companies in 2011 were disaggregated as follows:

Fiscal Revenue from Mining

<table>
<thead>
<tr>
<th>Tax</th>
<th>Total Revenue</th>
<th>Revenue from Mines</th>
<th>Per cent contribution by mines</th>
<th>Cent</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAYE</td>
<td>480 000 000</td>
<td>87 400 000</td>
<td>18%</td>
<td></td>
</tr>
<tr>
<td>Corporate Tax</td>
<td>296 000 000</td>
<td>45 600 000</td>
<td>15%</td>
<td></td>
</tr>
<tr>
<td>Royalties</td>
<td>83 400 000</td>
<td>83 400 000</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Customs Duty</td>
<td>334 000 000</td>
<td>26 700 000</td>
<td>8%</td>
<td></td>
</tr>
<tr>
<td>Other VAT, WHT, payment to local authorities etc</td>
<td>1 406 000 000</td>
<td>97 200 000*</td>
<td>7%</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>2 600 000 000</td>
<td>340 300 000</td>
<td>12%</td>
<td></td>
</tr>
</tbody>
</table>

Source: Deloitte Tax Study 2012, COMZ

While the absolute figure of $340 million contributed by the mining sector to total fiscal revenue in 2011 may appear small relative to the total revenue (export receipts) it is important to note that the mining sector is still experiencing high cost of production,
chunking approximately 72% of the total revenue. This leaves about 28% to be shared between the government and the shareholder of which the government currently takes around 60% of that 28%. Despite the current low capacity levels and high costs of production the sector’s contribution to the fiscal revenue is fairly comparable to the sub-region. In SA, Zambia, Tanzania and Swaziland the contribution are 12.2%, 13%, 10% and 2% respectively.

Contribution to Fiscal Revenue: Regional Comparisons

![Contribution to Fiscal Revenue: Regional Comparisons](image)

Source: Various Country Statistics

4.1 Fiscal challenges

While the mining industry has great potential to grow and be many times its current size the current fiscal landscape continues weigh down the maximum output the sector can generate. The sector is vulnerable to a myriad of taxes which include:

Mining Taxes

<table>
<thead>
<tr>
<th>Royalties</th>
<th>1% - 15%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corporate income tax</td>
<td>25%</td>
</tr>
<tr>
<td>VAT</td>
<td>15%</td>
</tr>
<tr>
<td>Customs duty</td>
<td>0-60%</td>
</tr>
<tr>
<td>PAYE</td>
<td>Up to 45%</td>
</tr>
</tbody>
</table>
The above taxes and fees currently constitute 17% of mining tax revenue and around 60% of the mining sector profitability before tax. The major concerns about the current fiscal regime are the indiscriminate or fragmented approaches by different government departments in levying charges to mining companies, high royalty rates and the unpredictability of the mining tax regime.

4.2 The prospects of the mining sector contribution to fiscal revenue

The potential maximum contribution of the mining sector to revenue largely depends on the growth and development of the mineral sector. The mining industry (excluding diamonds) requires over US$5-7 Billion dollars in capital to optimize production over the next 5 years. A lot more is required is new ventures are included. Of the above figures Gold requires 33%, platinum 40%, diamonds 11%, coal 8%, Chrome 4%, nickel 4%. If secured the minerals output for key sectors will grow phenomenally as shown below;

Requisite Investments in Mining

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Minimum Funding Requirement (US$ Bil)</th>
<th>2011 production</th>
<th>Expected production by 2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gold</td>
<td>2.3</td>
<td>12,992kg</td>
<td>50,000kgs</td>
</tr>
</tbody>
</table>

Source: ZIMRA, MOF
Given the above projected growth the contribution by the mining sector to revenue is expected to grow inexplicably to constitute between 20% and 25% of the total government revenue by 2016. The gold sector which was hard hit by the economic decline of the 2008 remains strategic to fiscal contribution if proper considerations are prioritized to the revival of the sector. If given the opportunity the sector will grow faster than the base metals. Apart from the capital challenges the gold sector is currently bleeding from the high and suboptimal royalty rates with the government having increased the royalty rates five times in the past three years. Royalty rates for gold and platinum have gone up by more than 100% and 200% respectively as shown below:

Increases in Au and PGM Royalty Rates

<table>
<thead>
<tr>
<th></th>
<th>2009</th>
<th>Mid 2010</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gold royalty</td>
<td>3%</td>
<td>3.5%</td>
<td>4%</td>
<td>4.5%</td>
<td>7%</td>
</tr>
<tr>
<td>Platinum royalty</td>
<td>3%</td>
<td>3.5%</td>
<td>4%</td>
<td>5%</td>
<td>10%</td>
</tr>
</tbody>
</table>

The platinum industry which has contributed more than 45% of the total sector output in the past 3 years is on an expansion phase and requires capital around $2,800,000,000.00 to increase its installed capacity. Despite being profitable the platinum producers in total are currently injecting capital more than double their earnings. With production levels expected to double in the next 3 years the role of the platinum will significantly prop up the sector’s contribution to the fiscus. It is against this background that the sector looks forward for a downward review in the current royalty rates to competitive levels in order quicken the recapitalization process by increasing the amount of earnings to be ploughed back as capital, as well as attracting new external capital.

5. Contribution to employment

The sector directly employed around 45,000 workers in 2011. It is estimated that another 15,000 workers are employed in associated industries that either supply
products to, or use products from the mining industry. Over 500,000 people are directly
dependent for their daily subsistence on mining incomes.

Contribution to employment

![Contribution to employment chart]

Source COMZ

6. Contribution to investments

The sector continues to act as a magnet for investment in Zimbabwe. It directly
accounted more than 50% of total fixed investment and more than 75% of the total
private sector investment in 2011. If the multiplier effect is taken into account, mining
helped generate about 80% of total investment in the economy. The reason for the rise
in the contribution of mining is the encouraging recovery in real mining output with more
than $5 billion required by the sector in the next 5 years.

(IK- STILL COMPILING STATISTICS)

7. Mining Sector and Corporate Social Responsibility

The sector continues to support CSR development initiatives that include:

- Primary and secondary schools
- Hospitals and clinics
- Community housing schemes
- Road construction
- Support for local income generating projects
- Scholarship programmes
- Local Procurement

The sector has concluded some empowerment deals, which make the mineral
resources sector the largest contributor to black economic empowerment.
APPENDIX 4: CHANGES IN MINERAL FEES (2011/2) & COMZ RECOMMENDED FEES

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Application fee for registration as an Approved Prospector</td>
<td>1500</td>
<td>5 000</td>
<td>3 000</td>
<td>This is similar to a practicing certificate fee. Even at recommended levels is too high. Indigenous Zimbabwean are mainly involved, at this level barrier to entry is high.</td>
</tr>
<tr>
<td>Application for renewal as an Approved Prospector</td>
<td>250</td>
<td>1 000</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>Fee for Duplicate Certificate of registration as an Approved Prospector</td>
<td>1500</td>
<td>1 500</td>
<td>1 500</td>
<td></td>
</tr>
<tr>
<td>Fee for a Prospecting License</td>
<td>100</td>
<td>500</td>
<td>300</td>
<td>These are instruments used by indigenous players in mining. If too high then goes against indigenisation programme</td>
</tr>
<tr>
<td>Ordinary</td>
<td>150</td>
<td>1 000</td>
<td>450</td>
<td></td>
</tr>
<tr>
<td>Special</td>
<td>150</td>
<td></td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Fee for a duplicate Prospecting License</td>
<td>200</td>
<td>100 000 precious stones</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>Fee for application of registration of a base mineral block</td>
<td>300</td>
<td>1 000 000 precious stones</td>
<td></td>
<td>At this stage in the development of projects no income is being generated. Based on principle of standardisation of fees. In line with proposal in Mines and Minerals Amendment Bill to have one type of title</td>
</tr>
<tr>
<td>Ordinary</td>
<td>500</td>
<td>500 000 diamond</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special</td>
<td>2 000</td>
<td>500 000 platinum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Registration fee for sites</td>
<td>100</td>
<td>4 000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fees for duplicate certificates of registration</td>
<td>300</td>
<td></td>
<td></td>
<td>To reduce work for ministry and enforce prudency</td>
</tr>
<tr>
<td>Application for revocation of forfeiture</td>
<td>500</td>
<td>5 000</td>
<td>2 500</td>
<td></td>
</tr>
<tr>
<td>Fee for Special Grant application under Part XIX</td>
<td>1000</td>
<td>10 000</td>
<td>5 000</td>
<td>Areas are reserved against prospecting or mining for a reason. Those with justifications to go against such reservations must pay a premium</td>
</tr>
</tbody>
</table>
Annual fee for renewal Special Grant under Part XIX US$ per Ha per year

| 20 | 100 | 20 |

Fee for renewal of SG are a cost when no income is being generated. Fees already too high.

INSPECTION FEES

Fee for inspection by declaration of work

<table>
<thead>
<tr>
<th>Registered blocks</th>
<th>First Inspection US$ per 5 claims</th>
<th>Subsequent inspections US$ per 5 claims</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1 000</td>
<td>1 000</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>20</td>
</tr>
</tbody>
</table>

These fees appear small in absolute numbers. However, because of the number of claims that are held that run into thousands for one to make commercially acceptable returns, the effect of high charges increase rapidly. Suggest that we maintain fees at 2011 levels.

Fee for inspection by production of precious metal blocks US$ per 5 claims

ZW$2 000	1 000	1 000
24 tons	24 tons	
60 tons	60 tons	

This is the value of minerals production necessary to inspect every 5 claims. These tonnages are deemed sufficient as minimum work requirements.

Fee for inspection of precious metal block without development work US$ per 5 claims or part thereof

| 10 | 1 000 | 20 |

Note 1. The principle regulations state these shall be as per section 17 which are recommended at US$20

Fee for inspection of base mineral blocks by payment US$ per 5 claims

| 10 | 1 000 | 20 |

Note 1

Unit of expenditure equivalent to 10m of development work US$

| ZW$300 | 100 |

Note 2

Fee for inspection of base mineral blocks by payment US$ per 5 claims

| 20 | 2 000 | 20 |

Note 1

Protection fee for claims US$ for each period of 2

| 10 | 1 000 | 20 |
| 10 | | 10 |

Note 3
<table>
<thead>
<tr>
<th>Fee Description</th>
<th>Fee 1</th>
<th>Fee 2</th>
<th>Fee 3</th>
<th>Note 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual fee for Precious stone blocks US$ for every 5 claims</td>
<td>10</td>
<td>1 000</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Annual fee for Mining leases US$ for every Ha</td>
<td>10</td>
<td>1 000</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Fee for inspection of mining leases by production</td>
<td>As for the blocks above</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fee for inspection of mining leases by making up deficient work by payment US$ per 5 Ha</td>
<td>10</td>
<td>1 000</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Annual fee for alluvial, alluvial, rubble or dump precious metal claims US$ per 5 claims</td>
<td>10</td>
<td>1 000</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Inspection of mining lease by production</td>
<td>24 tons 60 tons</td>
<td>100</td>
<td>24 tons 60 tons</td>
<td>Provided for under section 26 of the principal regulations RGN 247/1977</td>
</tr>
<tr>
<td>Precious metal blocks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chrome</td>
<td>24 tons 60 tons</td>
<td></td>
<td>24 tons 60 tons</td>
<td></td>
</tr>
<tr>
<td>Iron Ore</td>
<td>60 tons</td>
<td></td>
<td>60 tons</td>
<td></td>
</tr>
<tr>
<td>Limestone</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OTHER FEES AND CHARGES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Search fees: US$ per hour</td>
<td>4</td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Certificate of ownership: US$ per block of claims</td>
<td>15 with a minimum charge of 30</td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Copies of agreement: US$ per application</td>
<td>30 when prepared by an official 30 when prepared by applicant</td>
<td>30</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>
7.5 NEW FEES THAT ARE NOT PROVIDED FOR IN THE MINES AND MINERALS ACT

<table>
<thead>
<tr>
<th>PROVISION</th>
<th>FEES AS AT JANUARY 2012 (SI 11 OF 2012 US$)</th>
<th>COMZ RECOMMENDED FEES US$</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRESCRIBED FEES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fee for a Prospecting License</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ordinary for whole country</td>
<td>1000</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>Special for whole country</td>
<td>3000</td>
<td>450</td>
<td></td>
</tr>
<tr>
<td>These licenses will breed confusion in the registration of mining title.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Registration fees</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>diamonds</td>
<td>3 000</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>1 000 000 diamond</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 500 000 platinum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500 000 coal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 000 Chrome</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 000 Chrome Special PL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The law recognises Application fees for registration. The split of these fees into Application Fees and Registration fees makes the applicant pay double for a permit or license</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground Rentals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 000 per Ha/yr for diamonds</td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>100 per Ha/yr for Coal, CBM, Minerals, Oils, Energy Minerals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 000 per Ha/yr Platinum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300 per ordinary block</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 000 per Special block</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground rentals are the same as fees for inspection of mining titles or mineral exploration Providing for inspection fees and ground rentals is charging twice for the same activity.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Kewsu I 2012, COMZ
7.6 APPENDIX 5: MINERAL RESOURCE RENT TAX (RRT) LEGISLATION

(Generic wording adapted from Liberian Revenue Code)

a) **Purpose.** This Clause applies to determine whether a project is sufficiently high-yield to be subject to a RRT (surtax) and, if so, the amount of tax.

b) **Definition of High-Yield.** A project is considered high-yield and thus subject to surtax when the project’s pre-tax rate of return on total investment is greater than \((\text{Treasury Bond rate} + 7\%)\) percent, the threshold rate of return for application of this Clause. The Treasury Bond rate that has maturity nearest to 10 years at the end of the fiscal year, plus \(700\) basis points. If no Treasury Bond Rate is available, then the applicable threshold rate of return shall be \(20\%\), percent until a Treasury Bond is issued.

c) **Method to Calculate Yield.** A project’s accumulated negative net cash flow shall be determined by applying an annual accumulation factor of \(1.\) \((\text{above threshold rate over 100})\) to negative net cash flow carried forward from a prior tax period. At the close of each tax period, accumulated negative net cash flow carried forward from the prior period shall be increased by current negative net cash flow or offset by current positive net cash flow. A project is not high-yield and subject to surtax unless it’s accumulated net cash flow at the close of a period is positive.

d) **Surtax Rate.** Positive net accumulated cash flow at the close of a tax period is taxable at a rate of \((\text{rate}=50\%)\) percent and the amount of this liability is deductible from gross income for the tax period.

e) **Re-Set Accumulation to Zero.** Following a tax period for which tax is due under this section, a project’s accumulated negative cash flow is re-set to zero and the method of subsection (d) is re-applied using zero as the starting point for the succeeding tax period.

f) **Steps to Calculate Yield.** Beginning with the first tax period in which a project has begun construction, the following steps are used to calculate yield in accordance with subsection (d).

1) **Cost.** State the expenditures, as specified below, for the tax period. This is the project’s cost through the close of the period. Go to Step 2.
(2) **Revenues.** State the project’s revenues, as specified below, for the tax period, including revenues, if any, from the exploration period. This amount is the project’s revenues through the close of the period. Go to Step 3.

(3) **Test Net Cash Flow.**

 (A) **Determine net cash flow.** Subtract from revenues the amount of cost to arrive at net cash flow \((R - C = NCF)\).

 (B) **Net cash flow zero or negative.** If net cash flow is zero or negative, the project is not yet a high-yield project and the surtax does not apply. Multiply the negative net cash flow by 1.**\((\text{above threshold rate over 100})\)** to arrive at the project’s accumulated negative net cash flow to be carried to the next tax period. Go to Step 4.

 (C) **Net is positive.** If net cash flow is positive, tax is determined under subsection (e), and this amount is deductible in determining taxable income (below). Accumulated negative net cash flow is re-set to zero in accordance with subsection (f). Go to Step 4.

(4) **Reprise.** Re-apply steps (1) through (3) for each succeeding tax period, beginning with the period after the one tested under Step 3—

 (A) Add costs incurred in the succeeding period to any accumulated negative net cash flow carried from the prior period (zero if re-set) as under Step 1. Go to (B).

 (B) State revenues for the succeeding period as under Step 2. Go to (C).

 (C) Test net cash flow as under Step 3.

Determination of Expenditures for RRT Purposes

(a) **Expenditures Counted.** For the purposes of determining cost under Section (f)(1), a project’s expenditures for a tax period is the sum of the following amounts incurred during the period, and does not include the amount of any income tax paid:

 (1) Expenses deductible in computing taxable income, but not the allowance for depreciation or interest and finance charges;

 (2) Capital expenditures to acquire or construct a tangible or intangible asset for use in mining operations; and

 (3) Exploration, development, and capital goods expenditures as defined in **(the nation’s) Tax Law.** For a project’s first tax period, include expenditures for prior
exploration, development, and capital goods attributable to the project under (the nation’s) Tax Law.

(b) Transfer of Interest. Consideration paid for transfer of an interest in the project is disregarded in determining the project’s total expenditures.

(c) Only Production Expenditures. If an amount referred to in subsection (a) is attributable to commercial production and some other non-production activity of the project, only the amount attributable to commercial production is included in determining the project’s total expenditures.

Determination of Total Revenues for RRT Purposes

(a) Revenues Counted. For purposes of the RRT clause, a project’s total revenues for a tax period is the sum of the following amounts:

(1) The project’s gross income for income tax purposes for the tax period, including amounts from hiring or leasing-out property or the granting of rights to use property (but not including interest income);

(2) The project’s consideration received for the tax period for the disposal, destruction, or loss of any property (including materials, equipment, plant, facilities, and intellectual property or rights) used in mining operations if the expenditure incurred in acquiring the property was deducted in computing the project’s net cash flow for any tax period;

(3) Any amount received for the tax period for provision of information or data obtained from any survey, appraisal, or study relating to mining operations, if the expenditure incurred in undertaking the survey, appraisal, or study was previously deducted in computing the project’s net cash flow for any tax period;

(4) Any other amount received for the tax period that is a reimbursement, refund, or other recoupment of an amount previously deducted in computing the net cash flow of the project for any tax period; and

(5) If property used in mining operations has been destroyed or lost, any compensation, indemnity, or damages the project received in respect of the property under an insurance policy, indemnity agreement, settlement, condemnation action, or judicial decision.

(b) Transfer of Interest. Consideration received for transfer of an interest in the project is not included in a project’s total revenues.

(c) Only Production Revenues. If an amount referred to in subsection (a) is attributable to commercial production and some other non-production activity of the project, only the amount attributable to commercial production is included in determining the project’s total revenues.
Changing structure of the Mining Industry: 1994 & 2011

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Asbestos</td>
<td>Shabanie and Mashaba Mines (Pvt.) Ltd.</td>
<td>African Associated Mines Pvt. Ltd., 100%</td>
<td>Local</td>
<td>Shabanie Mine, Zvishavane; Gaths and King Mines,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>300</td>
</tr>
<tr>
<td>Coal</td>
<td>Wankie Colliery Co. Ltd.</td>
<td>Private investors 60%, Government 40%</td>
<td>Govt 60%</td>
<td>Hwange</td>
<td>5,000</td>
</tr>
<tr>
<td>Cobalt tons</td>
<td>Bindura Nickel Corp.</td>
<td>Anglo American Corp., 100%</td>
<td>Mwana Africa</td>
<td>Shangani, Madziwa, Trojan, Bindura & Epoch Mines</td>
<td>150</td>
</tr>
<tr>
<td>Copper</td>
<td>Mhangura Copper Mines Ltd. MCM</td>
<td>ZMDC 54.56%</td>
<td>ZMDC (shut)</td>
<td>Mhangura Mine</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Lomagundi Smelting & Mining (ZMDC)</td>
<td>ZMDC</td>
<td>ZMDC (shut)</td>
<td>Alaska Smelter & Refinery</td>
<td>35</td>
</tr>
<tr>
<td>Diamond ct</td>
<td>Auridam Zimbabwe Ltd.</td>
<td>Auridam Consolidated, 50%; Redaurum Red Lake Mines 50%</td>
<td>Local investors</td>
<td>River Ranch Mine,</td>
<td>50,000</td>
</tr>
<tr>
<td></td>
<td>(Murowa)</td>
<td>NA</td>
<td>Rio Tinto Plc, 78%, & RioZim Ltd., 22%</td>
<td>Murowa</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>(River Ranch)</td>
<td>NA</td>
<td>Local investors</td>
<td>River Ranch</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>(Marange)</td>
<td>NA</td>
<td>Canadile Miners (Core Mining Ltd. & Marange Resources Pvt Ltd.)</td>
<td>Marange</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>(Marange)</td>
<td>NA</td>
<td>Mbada Mining (Grandwell Holdings Ltd. & Marange Resources Pvt Ltd.)</td>
<td>Marange</td>
<td>NA</td>
</tr>
<tr>
<td>Gold kg</td>
<td>Rio Tinto Zimbabwe Ltd.</td>
<td>RTZ Corp. plc., 56%</td>
<td>RioZim local</td>
<td>Renco, Patchway, Brompton Mines, Cam-Motor dump</td>
<td>2,800</td>
</tr>
<tr>
<td></td>
<td>Cluff Resources Zimbabwe Ltd.</td>
<td>Cluff Resources plc, 82.4%</td>
<td>Mwana Africa</td>
<td>Freda Rebecca Mine,</td>
<td>2,500</td>
</tr>
<tr>
<td></td>
<td>Independence Mining Pvt. Ltd.</td>
<td>Lonrho plc, 100%</td>
<td>Metallion Plc</td>
<td>How, Athens, Tiger Reef, Redwing & Shamva Mines,</td>
<td>3,300</td>
</tr>
<tr>
<td></td>
<td>Falcon Gold Zimbabwe Ltd.</td>
<td>Falcon Investments S.A., 71.7%</td>
<td>New Dawn 80%</td>
<td>Daltry Mine, Venice Mine, Golden Quarry Mines</td>
<td>2,000</td>
</tr>
<tr>
<td></td>
<td>Corsyn Consolidated Mines Pvt. Ltd.</td>
<td>Lonrho plc, 100%</td>
<td>Metallion Plc</td>
<td>Anzac, Arcturus, Mazowe, Muriel Mine,</td>
<td>1,500</td>
</tr>
<tr>
<td></td>
<td>Jena Mines Ltd.</td>
<td>ZMDC 50% Trillion Resources, 50%</td>
<td>ZMDC</td>
<td>Jena Group,</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>Masasa Mines</td>
<td>Delta Gold NL, 100%</td>
<td>?</td>
<td>Giant tailings dump,</td>
<td>100</td>
</tr>
<tr>
<td>Iron and steel</td>
<td>Zimbabwe Iron and Steel Co. Zisco</td>
<td>Government, 92%</td>
<td>Zisco – Essar?</td>
<td>Redcliff,</td>
<td>1,000</td>
</tr>
<tr>
<td></td>
<td>Buchwa Iron Mining Co Bimco</td>
<td>Zisco, 100%</td>
<td>Zisco – Essar?</td>
<td>Buchwa West Mine, Ripple Creek Mine,</td>
<td>1,400</td>
</tr>
<tr>
<td>Ferroalloys: HC FeCr</td>
<td>Zimbabwe Mining and Smelting Co. Pvt Ltd. Zimasco</td>
<td>Union Carbide Zimbabwe, 100%</td>
<td>Zimasco Consolidated Enterprises Ltd. (ZCE) Sinosteel 86%, CAD Funf 14%</td>
<td>Peak Mine, Railway Block Mine, Smelter at Kwekwe,</td>
<td>178</td>
</tr>
<tr>
<td></td>
<td>Zimbabwe Alloys Ltd. Zimalloys</td>
<td>Anglo American Corp., 100%</td>
<td>Benscore Investments local</td>
<td>Smelter at Gweru</td>
<td>35</td>
</tr>
<tr>
<td>Mineral</td>
<td>Company Name</td>
<td>Owner (%), Type</td>
<td>Location/Activities</td>
<td>Source</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>---------------------------------------</td>
<td>--</td>
<td>--</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>FeCrSi</td>
<td>Zimbabwe Alloys Ltd. Zimalloys</td>
<td>Anglo American Corp., 100%</td>
<td>Benscore Investments local Smelter at Gweru</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lithium</td>
<td>Bikita Minerals Pvt. Ltd.</td>
<td>Private, 100%</td>
<td>Local Bikita Mine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>Trojan Nickel Mines</td>
<td>Bindura Nickel Corp., 100%</td>
<td>Mwana Africa Shangani, Madziwa, Trojan, and Epoch Mines</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>BSR Ltd.</td>
<td>Bindura Nickel Corp., 100%</td>
<td>Mwana Africa Smelter & refinery at Bindura</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>Rio Tinto Zimbabwe Ltd.</td>
<td>Rio Tinto Plc 100%</td>
<td>RioZim Empress Nickel Refinery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphate</td>
<td>Dorowa Minerals Pvt. Ltd.</td>
<td>Chemplex Corp. Ltd., 100%: AAC</td>
<td>Chemplex Dorowa Mine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PGMs</td>
<td>(Ngezi)</td>
<td>NA</td>
<td>Impala Platinum Holdings Ltd., Ngezi Mine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PGMs</td>
<td>(Mimosa)</td>
<td>Union Carbide</td>
<td>Aquarius Pt Ltd 50%, Zimplats 50% Mimos Mine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PGMs</td>
<td>(Unki)</td>
<td>NA</td>
<td>Anglo Platinum (Anglo American Plc) Unki Mine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tin</td>
<td>Kamativi Tin Mines Ltd.</td>
<td>ZMDC, 91%, private, 9%</td>
<td>ZMDC (shut) Kamativi Mine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vermiculite</td>
<td>Shawa Vermiculite Pvt. Ltd.</td>
<td>Private, 100%</td>
<td>Shawa Vermiculite Pvt Ltd. Shawa Mine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vermiculite</td>
<td>Dinidza Vermiculite Mining Co. Pvt. Ltd.</td>
<td>Private, 100%</td>
<td>Dinidza Vermiculite Mining Co. Dinidza Mine</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sources: RMG 2012, USGS 2012 & Media
7.7 APPENDIX 6: ZIMBABWE- GOLD PRODUCTION BY MINE & COMPANY

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Arcturus Gold Mine</td>
<td>O</td>
<td>0.690</td>
<td>0.580</td>
<td>0.580</td>
<td>0.600</td>
<td>1.098</td>
<td>1.100</td>
<td>..</td>
<td>..</td>
<td>African Pioneer</td>
<td>Au</td>
<td></td>
<td>0.000</td>
</tr>
<tr>
<td>Athens Gold Mine</td>
<td>S</td>
<td>..</td>
<td>..</td>
<td>0.330</td>
<td>0.400</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>African Pioneer</td>
<td>Au</td>
<td></td>
<td>0.000</td>
</tr>
<tr>
<td>Attica Mines Pvt Ltd</td>
<td>A</td>
<td>0.600</td>
<td>0.600</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>African Pioneer</td>
<td>Au</td>
<td></td>
<td>0.000</td>
</tr>
<tr>
<td>Blanket Gold Mine</td>
<td>O</td>
<td>0.690</td>
<td>0.540</td>
<td>0.640</td>
<td>0.803</td>
<td>1.075</td>
<td>0.700</td>
<td>0.500</td>
<td>1.114</td>
<td>Caledonia</td>
<td>Au</td>
<td>2.497</td>
<td></td>
</tr>
<tr>
<td>Cam & Motor Gold Mine</td>
<td>O</td>
<td>0.100</td>
<td>0.140</td>
<td>0.280</td>
<td>0.503</td>
<td>0.263</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>RioZim</td>
<td>Au</td>
<td>-0.569</td>
<td></td>
</tr>
<tr>
<td>Connemara Gold Mine</td>
<td>C</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>0.323</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>First Quantum</td>
<td>Au</td>
<td>986.000</td>
<td></td>
</tr>
<tr>
<td>Dalny Gold Mine</td>
<td>O</td>
<td>1.200</td>
<td>1.490</td>
<td>0.980</td>
<td>1.200</td>
<td>0.556</td>
<td>0.200</td>
<td>..</td>
<td>..</td>
<td>New Dawn</td>
<td>Au</td>
<td>1.303</td>
<td></td>
</tr>
<tr>
<td>Elvington Gold Mine</td>
<td>O</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>0.536</td>
<td>0.500</td>
<td>0.200</td>
<td>..</td>
<td>..</td>
<td>State of Zimbabwe</td>
<td>Au</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>Eureka Gold Mine</td>
<td>O</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>0.664</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>Mmakau</td>
<td>Au</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>Forbes & Thompson Pvt Ltd</td>
<td>A</td>
<td>0.500</td>
<td>0.800</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>Au</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>Freda Gold Mine</td>
<td>S</td>
<td>..</td>
<td>..</td>
<td>0.140</td>
<td>0.450</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>Forbes & Thompson</td>
<td>Au</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>Freda Rebecca Gold Mine</td>
<td>O, E/C</td>
<td>..</td>
<td>..</td>
<td>2.120</td>
<td>2.500</td>
<td>3.489</td>
<td>0.300</td>
<td>0.730</td>
<td>1.308</td>
<td>Mwana Africa</td>
<td>Au</td>
<td>-14.470</td>
<td></td>
</tr>
<tr>
<td>Golden Kopje Mine</td>
<td>C</td>
<td>..</td>
<td>0.220</td>
<td>0.260</td>
<td>0.511</td>
<td>0.300</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>Caledonia</td>
<td>Au</td>
<td>2.497</td>
<td></td>
</tr>
<tr>
<td>Golden Quarry Gold Mine</td>
<td>O</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>0.200</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>New Dawn</td>
<td>Au</td>
<td>1.303</td>
<td></td>
</tr>
<tr>
<td>How Gold Mine</td>
<td>O</td>
<td>..</td>
<td>..</td>
<td>0.900</td>
<td>1.200</td>
<td>1.050</td>
<td>1.500</td>
<td>..</td>
<td>..</td>
<td>African Pioneer</td>
<td>Au</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>Indarama Gold Mine</td>
<td>S</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>0.500</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>Yamana</td>
<td>Au</td>
<td>583.480</td>
<td></td>
</tr>
<tr>
<td>Inez Gold Mine</td>
<td>S</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>0.120</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>Mwana Africa</td>
<td>Au</td>
<td>-14.470</td>
<td></td>
</tr>
<tr>
<td>Jena Gold Mine</td>
<td>O</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>0.414</td>
<td>0.400</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>State of Zimbabwe</td>
<td>Au</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>Maligreen oxide Gold Mine</td>
<td>C</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>0.100</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>Cluff Gold, Pan African</td>
<td>Au</td>
<td>-0.976</td>
<td></td>
</tr>
<tr>
<td>Mazowe Gold Mine</td>
<td>S</td>
<td>0.770</td>
<td>0.370</td>
<td>0.420</td>
<td>0.600</td>
<td>0.455</td>
<td>0.250</td>
<td>..</td>
<td>..</td>
<td>African Pioneer</td>
<td>Au</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>Metallon Gold Zimbabwe Ltd</td>
<td>A</td>
<td>2.000</td>
<td>3.300</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>African Pioneer</td>
<td>Au</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>Mhangura Copper Mines Ltd</td>
<td>A</td>
<td>0.300</td>
<td>0.200</td>
<td>0.270</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>State of Zimbabwe</td>
<td>Cu</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>Mimosa Platinum Mine</td>
<td>O</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>0.303</td>
<td>0.426</td>
<td>0.447</td>
<td>Aquarius, Implats</td>
<td>Pt</td>
<td>Pd 58.429</td>
<td></td>
</tr>
<tr>
<td>Muriel Gold Mine</td>
<td>S</td>
<td>0.690</td>
<td>0.590</td>
<td>0.490</td>
<td>0.450</td>
<td>0.208</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>African Pioneer</td>
<td>Au</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>Ngezi PGM Mine</td>
<td>O</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>0.300</td>
<td>0.800</td>
<td>0.700</td>
<td>Implats</td>
<td>Pt</td>
<td>Pd 7225.000</td>
<td></td>
</tr>
<tr>
<td>Norman Levin Gold Mines Pvt Ltd</td>
<td>A</td>
<td>0.500</td>
<td>0.500</td>
<td>0.600</td>
<td>0.700</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>Au</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>Old Nic Gold Mine</td>
<td>O</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>0.200</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>New Dawn</td>
<td>Au</td>
<td>1.303</td>
<td></td>
</tr>
<tr>
<td>Olympus Gold Mines Ltd</td>
<td>A</td>
<td>0.300</td>
<td>..</td>
<td>0.210</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>0.200</td>
<td>..</td>
<td>..</td>
<td>Au</td>
<td>1.303</td>
<td></td>
</tr>
<tr>
<td>Patchway/Brompton Gold Mine</td>
<td>S</td>
<td>0.390</td>
<td>0.490</td>
<td>0.530</td>
<td>0.683</td>
<td>0.479</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>Au</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>Redwing Gold Mine</td>
<td>O</td>
<td>..</td>
<td>..</td>
<td>0.970</td>
<td>0.700</td>
<td>1.020</td>
<td>0.500</td>
<td>..</td>
<td>..</td>
<td>African Pioneer</td>
<td>Au</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>Reeduck Gold Pvt Ltd</td>
<td>A</td>
<td>..</td>
<td>..</td>
<td>0.350</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>Au</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>Renco Gold Mine</td>
<td>O</td>
<td>0.500</td>
<td>1.930</td>
<td>1.320</td>
<td>1.478</td>
<td>1.448</td>
<td>0.750</td>
<td>0.554</td>
<td>0.600</td>
<td>RioZim</td>
<td>Au</td>
<td>-0.569</td>
<td></td>
</tr>
<tr>
<td>Royal Family Gold Mine</td>
<td>C</td>
<td>..</td>
<td>..</td>
<td>0.200</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>Au</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>Sabi Consolidated Gold Mines Pvt Ltd</td>
<td>A</td>
<td>..</td>
<td>0.430</td>
<td>0.600</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>State of Zimbabwe</td>
<td>Au</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>Sadi Gold Mine</td>
<td>O</td>
<td>..</td>
<td>..</td>
<td>0.311</td>
<td>0.414</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>State of Zimbabwe</td>
<td>Au</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>Shamwa Gold Mine</td>
<td>O</td>
<td>..</td>
<td>0.610</td>
<td>0.750</td>
<td>1.117</td>
<td>0.600</td>
<td>..</td>
<td>..</td>
<td>..</td>
<td>African Pioneer</td>
<td>Au</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>Mine Name</td>
<td>Status</td>
<td>Au</td>
<td>Pt</td>
<td>Pd</td>
<td>Au</td>
<td>Pt</td>
<td>Pd</td>
<td>Value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tiger Reef Gold Mine</td>
<td>O</td>
<td>0.270</td>
<td>0.150</td>
<td>0.354</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>BioMet</td>
<td>Au</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turk Gold Mine</td>
<td>O</td>
<td>0.450</td>
<td>0.420</td>
<td>0.485</td>
<td>New Dawn</td>
<td>Au</td>
<td>1.303</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unki PGM Mine</td>
<td>O</td>
<td>0.150</td>
<td>New Dawn</td>
<td>Au</td>
<td>1.303</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Venice Gold Mine</td>
<td>C</td>
<td>0.400</td>
<td>0.570</td>
<td>0.700</td>
<td>0.700</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>New Dawn</td>
<td>Au</td>
<td>1.303</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vubachikwe Gold Mine</td>
<td>O</td>
<td>0.180</td>
<td>0.350</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>Forbes & Thompson</td>
<td>Au</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

= total, identified by producer in country
= total national production

*for main controlling company Source: RMG database RMD 2012.
7.8 APPENDIX 7: DRAFT ZIMBABWE MINERALS DEVELOPMENT POLICY

From the Ministry of Mines and Minerals Development (www.mines.zw)

Background To Minerals Development Policy Formulation Process
A first draft of this policy was compiled by the MMMD with assistance from a consultant. The Draft Policy was then extensively discussed within the Ministry. Thereafter the Ministry organised public hearings in all of the main mining areas to obtain feedback and comments from all stakeholders. Public hearings were held in Kadoma, Gweru, Bulawayo, Masvingo, Mutare and Harare and the participation was strong, vibrant and pertinent, particularly from the ASM fraternity. In addition, a bilateral with the Chamber of Mines was held, and the Presidency organised a successful intra-governmental workshop on the Draft Policy to obtain input from other state organisations and entities. The numerous comments, edits and suggestions from the stakeholders were collected by the Ministry rapporteurs and were assessed for relevance and applicability in a Ministerial workshop. The bulk of the pertinent proposals coming from the citizenry were then incorporated into this draft, either in part or in full.

TOWARDS A ZIMBABWEAN MINING VISION FOR THE 21ST CENTURY
This Vision is based on the African Union’s “Africa Mining Vision” adopted by the Heads of State in 2009.

Vision Statement
“Equitable and optimal exploitation of Zimbabwe’s mineral resources to underpin broad-based sustainable growth and socio-economic development”

The shared vision will aim to achieve:

- A knowledge-driven mining sector that catalyses and contributes to the broad-based growth and development of, and is fully integrated into, an African market through:

168 These replicate the African Union’s “Mining Vision” of 2009
Down-stream linkages into mineral beneficiation and manufacturing;
- Up-stream linkages into mining capital goods, consumables and services industries;
- Side-stream linkages into infrastructure (power, logistics, communications, water) and skills and technology development (HRD and R&D);
- Mutually beneficial partnerships between the state, the private sector, civil society, local communities and other stakeholders;
- A vibrant, environmentally friendly and socially sustainable artisanal and small-scale mining sector;
- A comprehensive knowledge of its mineral endowment.

- A sustainable and well-governed mining sector that effectively garners and deploys resource rents and that is safe, healthy, gender and ethnically inclusive, environmentally friendly, socially responsible and appreciated by surrounding communities;
- A mining sector that has become a key component of a diversified, vibrant and globally competitive industrialising Zimbabwean and African economy;
- A mining sector that has helped establish a competitive Zimbabwean and African infrastructure platform, through the maximisation of its propulsive local and regional economic linkages;
- A mining sector that optimises and conserves Zimbabwe’s finite mineral resource endowments and that is diversified, incorporating both high value metals and lower value industrial minerals at both commercial and small-scale levels; and
- A mining sector that is a major player in vibrant and competitive national, continental and international capital and commodity markets.

Introduction

“Countries with non-renewable natural resource wealth face special opportunities and special challenges. Used well, these resources can create greater prosperity
for current and future generations; used poorly, they can cause economic instability, social conflict, and lasting environmental damage.”

The effective and efficient management of Zimbabwe’s natural resources is a critical element of the Government’s economic development programme (STERP170) and will entail “the crafting of an Exploration, Registration and Extraction Mining Policy which will form the basis for new comprehensive mining sector legislation.”171 Furthermore, “To ensure full exploitation of mineral resources, [the government] is reviewing the framework for mining rights, pricing of minerals and surrender requirements. The Mines and Minerals Act will also be amended to facilitate review of surface rentals, discourage hoarding and speculating in Exclusive Prospecting Orders.”172

This Minerals Development Policy document seeks to provide a framework for a minerals regime for the sustainable management of the country’s mineral resources and to guide interventions by government institutions as well as other stakeholders. It sets out the expectations for the sector to contribute not only to the revitalisation of Zimbabwe’s economy but more broadly to the development of its peoples, including future generations.

Mining in itself is clearly not sustainable, as it depletes finite national assets. However, mineral extraction can indirectly become sustainable in so far as it catalyses sustainable economic activity in other, sustainable, sectors, through maximising the economic “linkages” whilst the resource is still extant. Strategies to develop these complex and diverse linkages are seminal to this Minerals Development Policy.

A Zimbabwean Minerals Development Policy, to guide strategies, legislation and decision making, is all the more opportune and pertinent at the current global juncture of rapid and sustained growth in Asia, particularly China and India, that has dramatically increased mineral demand and prices. Given that the population

169 Natural Resources Charter (NRC), www.naturalresourcecharter.org
170 STERP 2009 “Getting Zimbabwe Moving Again”
171 STERP 2009, # 140
172 STERP 2009, #138
of developing Asia is more than three times that of the industrialised (OECD) countries, it can be expected that this high mineral demand cycle could continue for some time yet. This provides a unique window of opportunity for Zimbabwe to use its mineral resource endowment wisely, to underpin integrated and diversified national growth and development, and to avoid the pit-falls of the “resource curse”. Many resource-rich African states have failed to realise the earlier expectations of rapid development due to the negative impacts of resource booms, such as the strengthening of the national currency, the diversion of capital and skilled labour into the resource sectors, rendering other sectors uncompetitive, the subversion of resource rents by the political elites, and a low rate of reinvestment into economic growth due to colonial mining laws that permit the expatriation of the bulk of the resource rents.

Mineral deposits embody a massive variation in resource rents (returns above those necessary to attract the investment, = average return on investment: ROI), much greater than any other sector except for hydrocarbons (oil and gas). These “resource rents” are combination of “differential rents” (deposit “richness” = grade, yield, etc.) and “scarcity rents” (limited global resources). Consequently it is difficult to design a one-size-fits-all minerals regime with generic fiscal (tax) and linkage conditions (local content, beneficiation, skills formation, et al, milestones) that will efficiently maximise the potential development impacts of all deposits over time (changing supply/demand periods). In general, any mineral regime will set minimum linkage development obligations in order to make investments into marginal deposits attractive.

Consequently the best way to flush out the maximum development impacts (linkages development) that any specific mineral deposit, embodying specific resource rents, could support, would be to get a market response through the public tender of the property against linkages development commitments (a form of developmental “price discovery”). However not all prospective properties are at a resource confidence level that would allow for viable competitive leasing (public tender).

This policy document seeks to give adequate indications to the investment community (both national and foreign) of a competitive mineral regime that is informed by African and international trends, is grounded in local conditions and is
accountable to national common interests. Further, this policy focuses on advancing the interests of both present and future generations of Zimbabweans (inter-generational equity) in the context of attracting private investment to facilitate the development of mineral resources, but in an optimal manner that husbands the resource and maximises the economic linkages for sustainable local and national growth and development.

3. Mineral Development Policy Principles

Alignment with the new Constitution of Zimbabwe

The Minerals Development Policy must embrace and be aligned with the new Constitution of Zimbabwe, including issues of gender equality and equity, affirmative action for women and indigenous Zimbabweans, benefits to mining communities (CSR: corporate social responsibility) and rights of the youth/children, women, the elderly, people with disabilities and veterans of the liberation struggle (Section 3. (2) (i)173).

The founding values and principles of the new Constitution of Zimbabwe cover “…the principles of good governance, which bind the State and all institutions and agencies of government at every level [and] include… (j) the \textbf{equitable sharing of national resources}174. Furthermore, the new Constitution affirms the principle of “…equitable access by all Zimbabweans to the country’s natural resources”.175

Mineral resources are vested in the President on behalf of the nation in the Mines and Minerals Act of 1960: “The dominium in and the right of searching and mining for and disposing of all minerals, mineral oils and natural gases, notwithstanding the dominium or right which any person may possess in and to the soil on or under which such minerals, mineral oils and natural gases are found or situated, is vested in the President.”176

In terms of procurement and other government contracts, including mineral leases, the new Constitution stipulates that:

173 Constitution of Zimbabwe, Final draft, January 2013
174 Constitution of Zimbabwe, Final draft, January 2013
175 Constitution of Zimbabwe, Final draft, January 2013, #289
176 Mines and Minerals Act, [Chapter 21:05]. #2

243
“An Act of Parliament must prescribe procedures for the procurement of goods and services by the State and all institutions and agencies of government at every level, so that procurement is effected in a manner that is transparent, fair, honest, cost effective and competitive.

(2) An Act of Parliament must provide for the negotiation and performance of the following State contracts-

a) joint-venture contracts;
b) contracts for the construction and operation of infrastructure and facilities; and
c) concessions of mineral and other rights;

to ensure transparency, honesty, cost-effectiveness and competitiveness.”

Consequently this Mineral Policy is governed by the constitutional requirement for the transparent, fair, honest, cost effective and competitive acquisition of exploration services, through the issuing of exploration licenses, and the leasing of mining properties, through the issuing of mining leases by the State.

Whilst recognising that mineral resources in the ground belong to the Nation, mineral operations will inevitably also comprise of elements of private property, such as surface facilities. Section 71 of the new Constitution states that “…every person has the right, in any part of Zimbabwe, to acquire, hold, occupy, use, transfer, hypothecate, lease or dispose of all forms of property, either individually or in association with others” and if deprived of their property, requires the acquiring authority “to pay fair and adequate compensation before acquiring property or within a reasonable time after the acquisition”.

The new Constitution further states that “…every person has a right to an environment that is not harmful to their health or well-being to have the environment protected for the present and future generations, through reasonable legislative and other measures that-

(i) prevent pollution and ecological degradation;
(ii) promote conservation; and

177 Constitution of Zimbabwe, Final draft, January 2013, #315
(iii) secure ecologically sustainable development and use of natural resources while promoting economic and social development.”\(^{178}\)

Consequently this Mineral Policy seeks to balance economic and social development with ecologically sustainable minerals development.

Other mineral policy principles contained in “Getting Zimbabwe Moving Again”\(^{179}\) include:

1. The facilitation greater exploration to identify and develop new national mineral assets, both by the state and the private sector;
2. The elimination of resources hoarding and speculation, and the efficient extraction of resources;
3. The maximisation of value addition in Zimbabwe, both through increased beneficiation and local content;
4. The implementation of a mineral fiscal regime that optimises returns to the asset owner (the state) whilst still remaining attractive for investments by the operators;
5. The facilitation of small and medium scale mining, including support for mechanisation.

Zimbabwe has a rich and diverse minerals resource base that should be an important contributor to sustainable growth and development. The sector has rebounded dramatically from the hyperinflation economic crisis and with “dollarisation”, the value of mineral production has increased several-fold. However, if this increased mining activity is to ultimately result in more than just “holes-in-the-ground”, the crucial mineral economic linkages need to be realised whilst the resources are still extant.

Developing with Broad Participation

The Government of Zimbabwe policy shall encourage broad and more direct participation of all stakeholders which shall promote critical social acceptance of mineral projects. Thus both project sponsors and Government haveModeled text
responsibilities for developing and disseminating procedures to enhance effective consultation and participation. The facilitation of local equity participation in mining ventures could also help in enhancing acceptance.

4. Mineral Endowment

Zimbabwe has a long and illustrious mining history: There are over 4000 ancient gold mines and workings in southern Africa\(^{180}\), predominantly in Zimbabwe. Although Great Zimbabwe is not close to the local gold seam, its power derived from controlling the trade in gold. In the 1,200 years preceding European colonisation, it is estimated that about 4000 ancient mines produced between 600 and 800 tonnes of gold "...with a normal production during their heyday of about 20,000 oz. a year"\(^{181}\) and "the gold trade was directly responsible for the rise of the Zimbabwe state"\(^{182}\). During this period mine shafts were sunk to a depth of 100 feet and complex mining methods were used including ventilation shafts and fracturing the rock face with fires.

Zimbabwe is endowed with a wide variety of mineral resources, which are mainly found in the following geological formations and bodies:

- **The Greenstone Belts**: Gold and silver, as well as considerable resources of iron ore, nickel, copper, cobalt and podiform chromite, also chrysotile asbestos (Mashaba Igneous Complex), limestone, pyrite and antimony;
- **The Great Dyke**: PGMs\(^{183}\) and gold with associated copper, nickel and cobalt. Also, chromium (chromite seams), as well as minor asbestos and magnesite;
- **The Magondi Supergroup**: Copper and silver (Dewera Group);
- **The Karoo Basins**: Considerable bituminous coal, coking coal, anthracite, coal-bed methane (CBM) and shale gas resources;

\(^{181}\) Summers, 1969, p218

\(^{182}\) Huffman 1974, p241

\(^{183}\) PGMs: Platinum Group Metals (Pt-platinum, Pd-palladium, Rh-rhodium, Ru-ruthenium, Ir-iridium, Os-osmium)
The Carbonatite Igneous Complexes: phosphate (Dorowa, Showa);

Kimberlite pipes: diamonds (Morowa, River Ranch);

Pegmatites: Lithium minerals, columbite-tantalite, cassiterite, et al;

Recent alluvial and placer deposits: Gold and diamonds (possibly from reworked Umkondo conglomerates).

The Government is committed to attracting and enabling private sector investments for the development of mineral deposits and to promote new investments in exploration and development of mineral deposits. Geological information and mineral data will be made readily and widely accessible to both small and large scale prospective investors through a user-friendly minerals cadastre information management system (MCIMS).

In order to enhance the attractiveness of the minerals sector the Government will rebuild its capacity (Geological Survey of Zimbabwe) to undertake modern geological mapping and will dramatically increase funding for geo-survey activities. The viability of reinvesting a portion of mineral revenues into systematic geo-survey will be explored in conjunction with tax incentives for private sector exploration. The long term future of the Zimbabwean minerals sector and its linkage industries is fundamentally dependent on on-going investments into geo-survey and exploration today.

5. Mineral-Based Development

In order to optimise the economic linkages the current “colonial” minerals governance regime (“free mining”), based on a “free entry” claim, needs to be fundamentally overhauled to both encourage the discovery of new mineral deposits and to maximise the developmental impact of known mineral assets through transparent and competitive public tender against developmental outcomes.

Zimbabwe will use its finite mineral resources endowment to catalyse wider national economic growth and development through the maximisation of the seminal mineral economic linkages. These include:

1) **Fiscal linkages**- mineral resource rents will be captured, through the introduction of a resource rent tax on returns in excess of the return required to attract investment (average national return of investment).
These revenues will be reinvested into building long-term physical and human (knowledge) infrastructure, to underpin future national competitiveness, and into minerals development (exploration and technology development) to prolong the life of mineral resources. Taxes, tariffs and fees that add to the cost of mining will be minimised, with a lower schedule for ASM184, to encourage the optimal extraction of the resource and to discourage “high-grading”. RDC fees/levies should comply with a national formula to standardise the ad hoc and variable application of such fees/levies.

2) **Backward linkages** – the minerals inputs sectors (capital goods, consumables, services) need to be grown, to take advantage of the expanding local demand, through measures to optimise the local content of mining purchases. The realisation of the backward linkages opportunities could seed wider national industrialisation (capital goods).

3) **Forward linkages** – minerals could provide critical feedstocks for other job-creating sectors provided that they are beneficiated into appropriate intermediate products such as iron/steel, polymers and base metals for manufacturing; nitrogenous and phosphatic fertilisers for agriculture; cement, steel and copper for infrastructure and fossil fuels for power. However, mineral beneficiation may require state facilitation through incentives and disincentives, such as a small export tax if the next value addition step is clearly viable. The use of producer power, together with other countries, will be explored to facilitate local value addition, where viable.

4) **Knowledge linkages** – the maximisation of human resource development (HRD) and R&D opportunities is essential for realising full benefit from the backward and forward linkages. No resource-based state has industrialised without significant investment in human and technology development. Joint strategies with the private sector will be

184 ASM: Artisanal and small-scale mining/miners
pursued (through PPPs), including the reinvestment of resource rents into knowledge development.

5) **Spatial linkages** – high rent minerals are often able to finance major infrastructure (transport, power and water) which could underpin the development of other sectors such as agriculture, forestry and manufacturing, provided that the mineral leases provide for excess capacity and third party access at non-discriminatory prices. The huge Mwanesi iron ore resource could possibly underpin a low-cost logistics corridor to the coast which could substantially reduce the cost of trade (imports/exports) for the national economy.

6) **Scale:** All of the linkages would be greatly enhanced through access to larger markets and in this regard configurations for equitable regional integration will be investigated and pursued (e.g. COMESA, SADC and SACU).

Through these channels, Zimbabwe’s minerals endowment could catalyse wider economic development and industrialisation, but only if the minerals regime is overhauled and effectively administered to maximise all of the developmental opportunities associated with mineral extraction and processing.

6. **Minerals Governance.**

The current “free-mining” (FIFA\(^{185}\)) colonial mineral regime based on claims is inappropriate for using national mineral assets to underpin wider development and industrialisation. A new minerals regime will be configured to:

1) Establish an internationally competitive, stable and conducive business climate to attract and sustain foreign and local investment, whilst ensuring equitable distribution of benefits from mining activities to meet both current and future needs;

2) Encompass a mineral fiscal regime that assures the country of fair value from the depletion of its resources, whilst offering equitable rewards to private investors;

\(^{185}\) FIFA: first-in-first-assessed
3) Ensure to optimal mining at the feasible lowest cut-off grade of the nation’s mineral deposits and the ensure that mineral leases allocate resources commensurate with the lessee’s mining work plan over the maximum lease period of 25 years;

4) Ensure “use-it-or-lose-it” conditions on all types of mineral rights to minimise the sterilisation of national mineral assets;

5) Incorporate instruments to ensure the realisation of the mineral linkages, recognising that FDI, in serving foreign shareholders, is less likely to develop these without the requisite incentives and disincentives;

6) Establish mechanisms for the arbitration of competing land use options;

7) Enhance the participation of indigenous Zimbabweans in mining and related linkage industries and facilitate equitable access to the sector by all Zimbabweans with the requisite capabilities, irrespective of gender or ethnicity;

8) Minimise adverse social conditions and environmental degradation due to mining activities and enhance the health and safety regime for workers in this intrinsically dangerous activity;

9) Support and enable sustainable artisanal and small scale mining activities to create employment, generate income and help reduce poverty in the rural areas;

10) Ensure consultation of all stakeholders and affected people, from exploration through mining and post-mine closure;

11) Establish an effective administration and management of the mineral sector;

The new Constitution commits Zimbabwe to maximise the returns from the lease of mineral assets through transparent, fair, honest, cost effective and competitive concessions/contracts. Consequently, all known deposits and all lapsed or abandoned properties will be publically tendered to optimise the development impact through maximum linkages development. A developmental Mineral Policy will cater for the varying levels of resource confidence of potential mineral properties by only permitting exploration (prospecting) licenses over areas that have no known mineral occurrences, by auctioning all known properties and by reserving partially known deposits for further exploration by state agencies. The detailed parameters of the mineral assets auctioning process will be promulgated in the Regulations attendant to the new Law.
The following actions on the administration of national mineral assets will be progressed:

- The development of a new Minerals Development Act (MDA) to cater for a hybrid of FIFA (claims) and a public tender system, for “unknown” and “known” mineral resource terrains, respectively, and to include viable backward (local content) and forward linkages (beneficiation) milestones and a minimum corporate spend on knowledge formation (skills formation and technology development);
- The new law will cater for exploration licenses and ASM (Artisanal and Small-scale Mining) prospecting licences, ASM leases, and Mining Leases on a use-it-lose-it principle. The detailed procedures and modalities will be promulgated in the attendant Regulations;
- The establishment of a functional and user-friendly national mineral cadastre information management system (MCIMS);
- The rebuilding the ASM support “golden triangle” of finance, marketing and technical support;
- The new law will also cater for a resourced and representative Minerals Development Board to advise the Minister on minerals development issues and to assist in mineral related disputes resolution.

This policy will also ensure that mineral sector development takes advantage of initiatives and collaboration at regional, continental and international levels to assure best practices and good governance for accelerated growth and development.

7. Regulatory Framework

The Government of Zimbabwe is committed to the creation of a stable and conducive business climate. In the context of the legal and regulatory framework for the mineral sector, this involves:

- an open, transparent and competitive auction procedure for known mineral deposits,
- a predictable, time-limited, exploration licensing system for terrains with unknown deposits,
• a secure mining licence (lease) term (max 25 years) against CRIRSCO186 compliant reserves commensurate with the work-plan,
• clear procedures on the granting of an amended licence if further reserves are delineated,
• clearly defined rules and regulations that:
 o Set out simple and transparent procedures for the allocation of rights,
 o stipulate the conduct of exploration activities,
 o define the transition from exploration to mining rights and the transfer of these rights,
 o regulate the conduct of mining,
 o define local content and value-addition obligations.
 o stipulate local skilling and technology development commitments.
 o guarantee security of tenure and the orderly carrying out of business, and
 o ensure exclusivity of specified mineral rights over licensed areas.

Government has resolved to overhaul the Mines and Minerals Act and introduce a new state-of-the-art Minerals Development law that will maximise the impact of mineral assets on growth and development, whilst remaining attractive for private sector investment. The mineral title system will encourage active mineral exploration and exploitation but discourage sterilisation for speculative and/or other purposes, but a retention license to allow the operator to retain an unworked right through periods of exceptionally low mineral prices will be configured. Disputes relating to mineral rights will be addressed in a timely and fair manner by government and, if no settlement is reached, the courts of Zimbabwe.

An accessible web-based mining cadastre information management system will be established that will enhance transparency in the award and monitoring of mineral rights. The principle of First-In-First-Assessed (FIFA) will form the basis for conferring mineral exploration rights over areas where there are no known state

186 CRIRSCO: Committee for Mineral Reserves International Reporting Standards (e.g. SAMREC, JORC)
mineral assets and a transparent and competitive auction system will be used to
cession all known mineral deposits, in accordance with the new Constitution.
To ensure coherence in decision-making, the new Minerals Development Law will
be harmonised with other statutes administered by other institutions that directly
or indirectly affect the development of the mineral sector.
The allocation of resources to strengthen the institutions with oversight
responsibilities is a critical part of Government’s development program. The
relevant institutions will be encouraged to consult and develop understanding
between them as to their respective roles in and contributions to decision-making
that impacts on the minerals sector.
The Government of Zimbabwe recognises the need for special procedures to
regulate mining of construction materials and to this end will develop mechanisms
to ensure sustainable mining of minerals for construction and traditional purposes.

8. Equitable and Competitive Mineral Fiscal Regime

The fact that minerals constitute a non-renewable resource makes it necessary for
the country to maximise the economic linkages, particularly the fiscal linkages,
through the collection of economic rents in compensation for the forgone benefit.
Unlike other concessions where the state asset is returned at the end of the lease
with an enhanced value, mineral assets are depleted by the concessionaire and
the state is left with a hole in the ground. The substantial impacts that mineral
operations can have on the environment, society and future generations warrant
that appropriate policy prescriptions be developed by the government to provide a
mechanism for compensation as well as incentives to encourage sustainable
development of its mineral resources, through the facilitation of sustainable
ancillary economic activities.
The substantial contributions to growth and development that can be realised by
mineral resources require significant investments. Discovering a commercial
mineral deposit and developing it into a mine is a risky business, as there is no
guarantee of finding a deposit that can be mined profitably. There is often a long
lead-time between expenditure on exploration and development and revenue
generation from mining. In addition, the fact that major mineral deposits often occur
in remote areas with poor social and physical infrastructure raises the capital costs
of the project, but could also increase the positive collateral impact. There are
currently limited skills and financial resources and services available within the country, necessitating the attraction of foreign capital and skills in the short to medium term.

The Government of Zimbabwe recognises the need to devise a fiscal regime that assures the country of fair value for its resources while offering sufficient incentives that will ensure fair and reasonable return to private investors. Such a regime should allow the investor to recover exploration and development outlays in a timely manner, to achieve an acceptable rate of return commensurate with risk and to meet financial obligations to creditors and suppliers. The government will institute a well-designed fiscal regime that encourages investment, optimises economic linkages, exemplifies transparency, and captures reasonable and sustained revenue for the Zimbabwean people, within the confines of achieving national fiscal and regulatory economic uniformity.

Mineral deposits often embody significant “resource rents” which are profits in excess of the normal rate of return, arising from the particular above average nature of the deposit (grade, yield, location, etc.) or scarcity of the mineral/s. Such excess windfall rents need to be equitably shared between the asset owner (Zimbabwe) and the asset exploiter. An equitable Resource Rent Tax (RRT) will be introduced that will replace the current Additional Profits Tax (APT). Other taxes that add to the cost of mining, such as royalties and fees, will be reviewed in the light of the RRT, recognising that these raise the mining cut-off grades and consequently sterilise national mineral resources.

The longer term, the bulk of RRT receipts will be placed in a SWF\(^{187}\) and the SWF’s real earnings will be used to enhance national sustainable development (inter-generational) through the consideration of the following possible disbursement windows:

1. A Minerals Development Fund to finance accelerated geological mapping (ZGS) and co-finance indigenous private sector exploration, to ensure a

\(^{187}\) SWF: Sovereign Wealth Fund
pipeline of new mineral developments as old mines are depleted or exhausted;

2. A Fiscal Stabilisation Fund to protect the nation against external fiscal shocks (falls in revenue collection due to global crises causing mineral prices downturns);

3. A Knowledge Fund to finance STEM 188 skills and local technology development, to increase national competiveness and thereby compensate for mineral assets depletion;

4. An Infrastructure Fund to increase national economic competiveness, to compensate for mineral assets depletion.

Mining companies with annual revenues above a threshold (to be determined) will be required to carry out a periodic tax self-audit, using recognised independent auditors, to assist the state in combatting transfer pricing and other forms of tax avoidance. The efficacy of permitting investments from tax havens will be reviewed, given the inherent strong incentive for these companies to shift profit from Zimbabwe to such jurisdictions through transfer pricing.

All revenues from Zimbabwean mineral operations must be primarily banked in Zimbabwe before any externalisation for foreign costs or disbursements.

The goal is to establish a fiscal regime which:

1. optimises the inherent value of the nation’s mineral resources;
2. regulates the rate of extraction and domestic pricing of critical strategic mineral feedstocks for economic growth and development;
3. minimises instruments that add to the cost of production and thereby sterilise resources;
4. is efficient in encouraging optimal extraction and avoids selective mining of high grade ore;
5. garners an equitable share of the resource rents for the nation and the developer;

188 STEM: science, technology, engineering and mathematics
(6) allows for reasonable stabilisation of specific taxes for defined periods (debt repayment);
(7) uses internationally best-practice instruments;
(8) is coherent and simple to administer,
(9) minimises non-standard instruments for specific rights holders, and provides mechanisms to ensure the establishment of the seminal economic linkages, including:
(a) local processing (value addition),
(b) the development of local supplier industries (local content),
(c) increased training and employment of locals,
(d) local technology development (R&D) and
(e) the integration of mining with other economic sectors.

9. Mineral Fiscal Leakages

It is recognized that the strategy of promoting FDI (foreign direct investment) carries several risks including a potential greater incentive and scope for state revenue leakages through transfer pricing. The TNC’s (trans-national corporations) multi-state operations enable them to exploit tax rate differentials, by deflating profits in higher-tax jurisdictions and declaring profits in lower-tax jurisdictions by:

• Sale of minerals below market prices to affiliates in low-tax jurisdictions. Many minerals do not have terminal markets (metal exchanges) especially ores and concentrates, which are difficult for the state to value: All minerals should be sold through authorised dealers or the MMCZ which should be resourced to ensure that fair value is achieved for all mineral exports;

• Complex price hedging mechanisms between related parties: Taxes due should be calculated on income at market prices thereby shifting all hedging risks to the producer or, alternatively, hedging should be limited to a maximum portion of production, with open tender for the hedging instrument;

• Debt finance provided by related parties at above-market interest rates: A possible remedy could be to limit debt interest rate to a function of a recognised international corporate debt rate and to limit allowable debt ratios (gearing);
• Related party excessive management fees, technical services, or HQ costs. These costs should be capped at a maximum percentage of costs;
• High leasing fees for capital goods and machinery from related parties: All leasing from foreign entities should be through open and transparent tender;

While transfer pricing of production/exports will be contained through a capacitated MMCZ the containment of transfer pricing of inputs (including finance/debt) is more complex and will require the assessment of diverse interventions as outlined above. The efficacy of discouragement of FDI from recognised tax havens and forensic tax self-audits, for larger turnover operations, will also be assessed. As developed countries are also victims of this abuse, assistance from select developed states and organisations will be sought in this regard.

10. Investing for the Future (Sustainable Investment)

Mining resources are finite. The wealth generated from mineral resources has to be harnessed to provide a platform for development and growth well after they are exhausted. Revenue accrued from the nation’s mineral resources shall also be invested in other forms of capital, especially human and social infrastructure, as well as social assets. It calls for prudence in investment decisions, fiscal discipline and the effective monitoring of disbursements and expenditure. We must build the capacity to predict and manage our revenues even as they fluctuate because of commodity price changes. In this regard the advisability of ring-fencing of RRT revenues will be investigated with a view to establishing a fiscal stabilisation fund as a key component of a Sovereign Wealth Fund (SWF) to contribute to intergenerational equity, through investments into long-term physical and human infrastructure. Furthermore, we need to ensure that mineral extraction creates the maximum local economic linkages whilst this temporal window of opportunity is still open, as these linkage industries can continue post-mining.

All mining companies need to develop CSI (Corporate Social Investment) plans that promote economic development in their area of operation that will outlive the life of the mine.

11. Transparent Benefits from Mining
The Government of Zimbabwe is committed to transparency through the provision of information on revenue flows and other benefits obtained from mining. To this end, it will rigorously assess the efficacy of the possible accession of Zimbabwe to the Extractive Industries Transparency Initiative (EITI) and the principles and procedures of the EITI Standard and EITI Rules.

The Government of Zimbabwe will ensure that communities that are or could be adversely affected by mining operations derive regular and significant benefits from those operations. A predictable matrix will be configured to determine such benefits, which will include but not be limited to equity/revenue allocation (including Community Trusts), access to employment, the provision of infrastructure for local use and resources for local education and skills formation. Mining companies will be encouraged to develop local supply chains for their purchases, thereby integrating themselves into the local economy.

The Government of Zimbabwe will also strive to maximise the wider benefits from mining on the regional and national economies, in a transparent and equitable manner.

12. Strategic Minerals

Government recognises that certain minerals are “strategic” for national growth and development. The new Minerals Development Act will set up clear and transparent guidelines for the designation of select “strategic minerals” that are critical feedstocks into other sectors of the economy, including:

- **manufacturing** - iron/steel (ferrous ores and scrap), polymers (fossil fuels) and base metals/scrap;
- **agriculture** - fertilisers (NPK\(^{189}\)) and conditioners;
- **infrastructure** – cement (limestone), steel and copper;
- **power** - fossil fuels.

Where appropriate, the State will regulate the extraction rates of these strategic minerals to ensure long-term availability for domestic supply and will, if necessary, regulate the pricing of these minerals and secondary metal supply (scrap metals).

\(^{189}\) NPK: nitrogen, phosphate & potassium
into the domestic economy. Such pricing will reflect a reasonable rate of return to private investors. In addition, in this regard the ZMDC will be tasked with developing such critical mineral feedstocks to be supplied into the domestic economy at developmental prices (utility returns) to facilitate downstream economic activity.

The designation of “strategic minerals” will be assessed by an inclusive Minerals Development Board that will motivate any such designation in a fair, objective and transparent manner, within the legal guidelines as contained in the new Minerals Development Law.

13. Disputes Resolution and Advisory Capacity

The proposed Minerals Development Law will build on the Mining Affairs Board in the current Act to cater for a Minerals Development Board, comprised of representatives from government, industry labour and universities, as well as select appropriate experts. The key functions of the proposed Minerals Development Board will include:

- Advising the Minister on the allocation of exploration and mining licenses/leases;
- Advising the Minister on reasonable value addition, local content, skilling and technology development targets (milestones);
- Advising the Minister on the designation of select “strategic minerals”;
- Determining appropriate extraction rates and domestic pricing of such “strategic minerals”;
- Advising the Minister on the suspension and/or cancellation of mineral rights that fail to comply with the national minerals regime and/or their license/lease conditions;
- Dispute resolution on competing mineral property rights and domestic mineral pricing;
- Developing medium to long-term national minerals development strategies; and
- Advising the Minister on improvements to the Mineral Regime including amendments to the prevailing legislation;
The Minerals Development Board will be suitably resourced to carry out its duties through the national budget and/or a judicious mining levy with a minimal impact on the cost of production. Time-frames for dispute resolution will be promulgated.

14. Minerals Marketing

The State of Zimbabwe reserves the right to market the people’s mineral assets, but undertakes to recompense the miner at fair and transparent market prices for mineral exports. This will be undertaken in compliance with the Minerals Marketing Corporation of Zimbabwe Act [Chapter 21:04] of 1982 for all minerals except for precious metals. Gold and the platinum group metals (PGMs) will be marketed through an Authorised Dealer, designated by the Ministry of Finance under the Gold Trade Act [Chapter 21:03 12] of 2006, which will be amended to include the PGMs.

Government will ensure that miners get fair value for the minerals produced and that marketing commissions are internationally competitive. In this regard Government will undertake a review of the MMCZ 0.875% commission to ensure that it is cost reflective and does not prejudice the minerals sector.

15. State Minerals Development Company

The Zimbabwe Mining Development Corporation (ZMDC) was established by The Zimbabwe Mining Development Act” [Chapter 21:08] of 1982. Its mandate is to: invest in the mining industry in Zimbabwe on behalf of the State; to plan, coordinate and implement mining development projects on behalf of the State; to engage in prospecting, exploration, mining and mineral beneficiation programmes; to render assistance to persons engaged in and about to engage in mining; to advise the Minister on all matters connected with corporate investments in the mining industry and make recommendations for the proper coordination of all investment programmes; to review the general economic conditions and prospects of the mining industry and make recommendations for the proper co-ordination of all investment programmes.

Government undertakes to review this mandate in the light of this Minerals Development Policy, with a view to it becoming a key state institution for facilitating both strategic minerals development and the development of the crucial mineral economic linkages. Government will also assess the efficacy of giving the ZMDC
a three month first-sight window on all new state financed geological data (geo-survey maps and data), to enable it to reserve potential deposits of designated strategic minerals.

16. Indigenisation

Prior to the European colonial invasions minerals were generally extracted by Zimbabweans for Zimbabwe, but during the 20th Century Zimbabwe’s minerals were predominantly mined by Europeans for Europe and its offshoots. The medium to long term goal of the Government of Zimbabwe is that the nation’s natural resources will be predominantly be exploited by indigenous Zimbabweans. Many successful mining countries reserved mineral exploitation for their citizens, such as some European states (in the past) and several Asian states (currently). However, given the current capital, skills and technology constraints facing the sector, the Government of Zimbabwe seeks to encourage equitable partnerships between local and foreign investors that overcome these impediments and to progressively build local capital, skills and technological prowess. Nevertheless, ASM mineral rights should be reserved for Zimbabwean citizens.

In this regard a custom time-line for indigenisation for new FDI in mining will be assessed, where the 10 year target could be 20% ownership and the 25 year target (i.e. on License renewal) could be 51%. This is likely to have a minimal impact on new FDI in mining.

Whilst, local communities must be protected from, and/or compensated for, the negative impacts of mining, the establishment of Community Trusts as an element of indigenous equity, should be applied uniformly and judiciously so as not to create affluent mining communities surrounded by poor communities.

The Ministry on Indigenisation and Empowerment will be engaged to assess the viability of strengthening a VCF for indigenous mining entrepreneurs and suppliers, through the transfer of a portion of equity (indigenization commitments) to the VCF, to increase its capital base and efficacy. The fund should be managed as a PPP with the Chamber to reduce risk.

Local content obligations will be configured to privilege indigenous suppliers and the Chamber of Mines will be encouraged to participate in the Venture Capital Fund (VCF), in partnership with Government, to support indigenous enterprises to
effectively supply the mining industry with the requisite quality and quantity of goods and services.

All listed mining companies, that derive more than half of their income from Zimbabwe, will be obliged to have their primary listing in Zimbabwe.

17. Competing Land Rights and Land Use Options

Mining involves intensive use of land and can adversely affect other uses. The Government of Zimbabwe shall establish a framework for the evaluation and management of competing land use options with a view to maximising the sustainable developmental potential for the nation and future generations, whilst recognising that mineral resources are national assets. This will involve recognition of the rights of other land users, the development of procedures for identifying and consulting potentially affected communities and persons as well as appropriate compensation principles, including criteria for considering resettlement options. Adequate administrative mechanisms and procedures shall be put in place to mitigate conflicts arising from competing land use.

18. Minerals Knowledge Formation

Minerals Knowledge Formation (STEM skills and technology development) is critical to growing and indigenising the minerals sector as well for developing the seminal minerals economic linkages, particularly the backward (inputs) and forward (beneficiation) linkages. In this regard Government will:

- Commission a survey to identify the critical minerals technical skills needs and develop of a national minerals (and linkage industries) HRD strategy;
- Develop a strategy to re-attract skills from the diaspora through interventions to locate skilled Zimbabweans, to assist in their relocation and on remuneration for critical scarce skills;
- Introduce a minimum knowledge corporate spending target of a percentage of payroll to fund local STEM skills formation and technology development for the minerals sector and for the back/forward linkage industries;
- Assess the efficacy of converting tertiary state tertiary technical training costs into notional student loans to be worked off over 15 years by working in-country, which will convert into a pro rata commercial loan if the graduate exits Zimbabwe before 15 years;
Rebuild mineral technology development institutions (Institute for Mining Research, Government Metallurgical Laboratory, Bulawayo School of Mines);

Use of a portion of the proposed RRT to fund knowledge formation, in partnership with the industry, for the training and remuneration of Maths and Science teachers to upgrade school education, to fund free engineering and science tertiary education at state intuitions, to support Engineering and Science Faculties, including post-grad programmes; and to fund grants for engineering and technician/artisan learnerships.

Configure the establishment of a dedicated Minerals Technology Fund (MTF) and a Minerals Skills Fund (MSF), as a Public-Private Partnerships (PPPs) with the mining industry, pedagogical institutions and state enterprises (ZMDC) and institutions.

Configure the establishment of targeted skilling programmes and opportunities for the youth, women and other marginalized groups

19. Environmental Stewardship and Social Responsibility

Among the key principles set out in Zimbabwe’s environmental policy are that development should be based on sustainable natural resource use and sound management and also that full environmental and social costs or benefits foregone should form part of public and private sector planning. The policy will also develop an integrated and multi-sectoral systems approach to resource and environmental planning. The application of this approach and these principles to decision-making relating to and the conduct and supervision of mineral operations requires compliance with the environmental protection laws of Zimbabwe and international best practices in the sustainable use of the natural resources. The Environmental Management Act [Chapter 20:27] of 2002 and the Environmental Management Agency (EMA) are central to the formulation and implementation of relevant principles and guidelines and in this regard customised environmental protection guidelines for mineral exploration and exploitation will be formulated jointly by the EMA and the Ministry of Mines. In addition, the efficacy of joint EMA-MOM inspections will be assessed.

No significant mineral operation will be permitted without an environment and social impact assessment having been conducted, evaluated and approved by the
Zimbabwe Government. Plans for managing environmental and social impacts must be incorporated into the assessment reports. These must, right from the inception of the operation, include plans for redressing physical impacts upon closure of the mine as well as for sustaining community livelihoods thereafter. The conduct of impact assessments must involve early consultation with the potentially affected public and open hearings will generally constitute a part of the evaluation. For Designated ASM Zones (DASMZs), the MMMD and EMA could carry out an SEA and then build the requisite mining modalities into all ASM Licenses issued within the area.

20. An Integrated Mining Sector

Whilst the development of Zimbabwe’s mineral resources will in the short term generate revenue and provide materials for reconstruction, in the longer term mining must be fully integrated into the national economy in order to maximise the multiplier effects. In this regard, opportunities for fostering up- down- and side-stream value addition will be pursued. As industrial minerals sometimes have a greater potential for linkages with other sectors of the economy, attention will be paid to encouraging their development, particularly by indigenous entrepreneurs. The development of local small, micro and medium-scale enterprises (SMMEs), especially in the procurement of goods and services, will be encouraged.

The concept of Spatial Development Initiatives (SDIs, also known as “Development Corridors”) was developed in southern Africa and is based on using high-rent resource exploitation projects as anchors for the development of infrastructure that can then underpin the development of other sustainable economic potential such as agriculture (and agro-processing), forestry (and processing), tourism, manufacturing, etc. and other related and ancillary industries in the area. The promotion of such integrated Spatial Development Initiatives, to unleash the full growth and development potential, will form an important feature of Zimbabwe’s resources development policy.

The government will encourage greater infrastructure linkages -considering that many mining projects require substantial infrastructure from mine to port and consume large amounts of electricity and water. The government will ensure that infrastructure needs of large-scale mines are integrated into national and regional economic planning with an appropriate regulatory framework to ensure open
access at non-discriminatory prices, for the infrastructure to benefit as many people and sectors as possible. These linkages will be optimised through integrated spatial planning and the formulation of appropriate economic incentives and disincentives that will encourage the mining companies to deepen their economic footprint within Zimbabwe.

The Government of Zimbabwe will look for possibilities for promoting forward linkages (beneficiation). Studies will be undertaken to explore the potential for such forward linkages in the ferrous, base and precious metal sectors, amongst others. Judicious export taxes will be imposed on crude mineral exports where the next beneficiation step has been independently shown to be commercially viable. Mining licenses for the export of crude ores, concentrates, alloys or minerals will be conditional on a feasibility study being undertaken by an independent agency within a stipulated time period. If the feasibility indicates that the beneficiation project is viable (gives a reasonable return on investment), then the Government will reserve the right to impose an equitable export tax on exports of the crude form.

Government will also facilitate and encourage strong linkages into the local knowledge infrastructure (skilling, technology transfer and development, universities, colleges, etc.) through a judicious basket of incentives and disincentives. In this regard the rapid development of STEM\(^{190}\) skills will be prioritised through a minimum corporate spend on skilling, to be set at a reasonable percentage of pay-roll.

Government will work with the private sector and other agencies in locating skilled Zimbabweans abroad in the diaspora, and develop strategies to attract this valuable resource back to the country.

To pursue viable policies for integration, there is a need to take account of not only the Zimbabwean economy but more broadly the economies of the SACU, SADC, COMESA and the African Union. In order to achieve viable markets and critical

\(^{190}\) STEM: science, technology, engineering & mathematics
economies of scale Zimbabwe will progressively integrate into the larger African markets, on an equitable basis, in terms of both mineral inputs and outputs. Furthermore, the Zimbabwean mining industry is critically constrained by power supply. In this regard regional power strategies will be evaluated with a view to sourcing low-cost clean energy from the region, in tandem with rehabilitating and expanding national power capacity.

21. Artisanal and Small-Scale Mining (ASM)

The artisanal and small-scale mining (“ASM”) sector has the potential to create employment, generate income and help to reduce poverty in rural areas and to stem migration from the rural areas to urban areas and should accordingly be reserved for Zimbabweans. However, it also has the potential for significant environmental degradation, negative social and health and life-threatening pollution of bio systems (e.g. mercury from ASM gold recovery).

ASM should be clearly defined and legalised to be eligible for targeted support and facilitation. An ASM definition of an operation or working extracting less than 15 thousand tonnes of ore per month (180ktpa) will be assessed for applicability.

An integrated approach is required in addressing ASM issues. Since ASM is largely a rural activity, any programme for it needs to be linked with rural development plans and designed based on a clear profile of who are engaged in the activity, when they mine and what else they do.

Whilst fees/levies which add to mining costs should be kept as low as possible, such fees/levies for ASM should be lower than those applied to larger operations, in order to stimulate the sector.

The pre-existing ASM support system of extension services (DMC, regional geologist, GML), finance (DMC equipment hire-purchase pound), and marketing/quality (GML and MMCZ) will be rebuilt and reinforced. Government will encourage the creation of an ASM Venture Capital Fund (VCF) as a PPP between

191 DMC: District Mining Commissioner.
192 GML: Government Metallurgical Laboratory
the state, the Chamber of Mines, DFIs193 and donors. These three components – extension services, financing, and marketing/quality assistance – constitute the institutional “Golden Triangle” for successful ASM development. To enable artisanal and small-scale miners to obtain financial facilities, consideration will be given to enhancing their creditworthiness, including the form of license tenure and to expanding the MILF (Mining Industry Loan Fund). Consideration will be given to rebuilding the regional ASM Service Centers, with minerals purchasing agents, as resources become available.

Given the historical role of women in ASM, support systems to facilitate the entry of female entrepreneurs into this sector will be configured, such as a special window in the ASM VCF and customised short training courses under the Bulawayo School of Mines.

The artisanal and small-scale mining sector could be strengthened by the miners organising themselves into associations, syndicates and, in some instances, cooperatives, in order to improve economies of scale, of creditworthiness and opportunities for mechanisation.

At a more general level, the Ministry in collaboration with the EMA will develop environmental compliance handbooks/manuals to assist ASM in adopting more environmentally friendly mining and processing methods and technologies and government will endeavour to have joint ASM inspections of the Ministry of Mines, EMA and other government agencies to ensure coordination and to minimise disruption. In addition, special training programmes, including environmental compliance, will be established for small scale miners in the main ASM regions, as resource become available.

The MMCZ and the GML will develop programmes to assist ASM in producing mineral products (concentrates) of marketable quality and aid them in realising fair value for their products. A graduated EIA payment system for consultants will be investigated for ASM operations. The EMA will be engaged on the efficacy of

193 DFI: Development Finance Institution (e.g. the AfDB, the IFC, the IDC)
having conditions in ASM mining licenses that would replace the need for ASM EIA

The relationship between large-scale mining enterprises and the ASM sector need not necessarily be an antagonistic one. The smaller-scale miners can benefit from technical inputs and advice from the large-scale operators who could provide markets for further processing (the “out-grower” concept). Such forms of cooperation could help the large scale miners reduce policing costs and gain acceptance and credibility in the community.

In order to marry necessary environmental compliance with the limited resources of ASMs, the concept of creating Designated ASM Zones (DASMZ) will be investigated with a view to the State undertaking detailed geological mapping and Strategic Environmental Assessments (SEA) of ASM over such zones to identify potential environmental threats from ASM activities and then to include conditions in the ASM licenses in DASMZs to eliminate or mitigate such threats. Failure to comply with such conditions would then lead to a possible suspension of the ASM license.

Potential targets for ASM operations identified in detailed geological surveys of ASM zones, will be disposed of in a transparent, fair, honest, cost effective and competitive manner, as per the Constitution of Zimbabwe.

The Ministry will strengthen the ASM capacity to develop and implement strategies to promote a strong and responsible ASM sector.

22. Building Capable Institutions

Successful mineral-based development will require policy coherence across several government Ministries, tiers and entities (such as Mines, Industry, Water, Environment, Technology, Education, Energy, EMA, RDCs, ZRP, ZIA, etc.). Accordingly government will endeavour to achieve close coordination and intra-governmental cooperation on strategy formulation, to ensure overarching alignment and clarity of roles.

The Government of Zimbabwe shall allocate a portion of revenue derived from mineral resources to strengthen the capacity of relevant state monitoring and promotion institutions, particularly geological survey department. In addition the Government of Zimbabwe will seek to facilitate the establishment and growth of
private sector entities to underpin a vibrant mining sector in areas such as finance, services, training/skilling, suppliers to and consumers of minerals.

23. Expected Outcomes

In addition to growth in mineral sector and its linkage sectors, the overall goals can be expressed in terms of broad-based inclusive development, growth and poverty reduction and significant improvement in the governance capabilities of the country. The impact of the minerals sector on the broad national development goals will be regularly assessed in terms of its contribution to:

(1) national revenue and foreign exchange earnings,
(2) gross fixed capital investment,
(3) the creation of inclusive sustainable indigenous employment,
(4) the provision of raw materials for downstream industries and national reconstruction,
(5) the provision of markets for local supplier industries (local content),
(6) the improvement in social and physical infrastructure,
(7) the stimulation of new economic activity through the provision of the requisite infrastructure;
(8) the development of indigenous capital and entrepreneurship,
(9) positive impacts on the environment and local communities;
(10) the development of sustainable ASM operations and communities,
(11) the improvement of mining health and safety indices, and
(12) the improvement in national knowledge infrastructure (STEM skills formation and technology transfer and development).

A scorecard will be configured with appropriate indices to enable government to monitor these contributions.