THE EFFECTS OF URSOLIC ACID ON NEONATAL PROGRAMMING AND ITS POTENTIAL TO PREVENT THE DEVELOPMENT OF METABOLIC DYSFUNCTION IN SPRAGUE DAWLEY RATS

Nyasha Charity Mukonowenzou

A dissertation submitted to the Faculty of Health Sciences, University of Witwatersrand, School of Physiology in fulfilment of the requirements for the degree of Master of Science in Medicine.

Johannesburg, South Africa, 2016
DECLARATION

I, Nyasha Charity Mukonowenzou, declare that the work contained in this dissertation is my own, except where others have helped as indicated in the acknowledgements and the reference list. This dissertation is being submitted for the degree of Master of Science in Medicine in the Faculty of Health Sciences at the University of the Witwatersrand, Johannesburg, South Africa. It has not been submitted before for any degree or examination at any University. I certify that all the experimental procedures used in this dissertation were approved by the Animal Ethics Screening Committee of the University of the Witwatersrand (AESC number: 2014/49/D).

……………………………
Nyasha Charity Mukonowenzou

Signed on the……………….day of………………………….2016
DEDICATION

To Kumbulani Yose,

who saw a diamond in the rough,

believed in it and polished it until it sparkled
CONFERENCE PRESENTATION

Data from this study was presented as a poster at the 43rd Congress of the Physiology Society of Southern Africa (PSSA), held at Khaya Ibhubesi, Free State from 6-9 September 2015. The poster was awarded the first prize in the Johnny Van der Walt student poster competition and is offered in support of this dissertation:

ACKNOWLEDGEMENTS

“Coming together is a beginning. Keeping together is progress. Working together is success” (Henry Ford) - this research is a result of a lot of teamwork. I would like to thank the following individuals and groups for their assistance;

“A teacher affects eternity; he can never tell where his influence stops” (Henry Adams) – for the supervision and mentorship, thank you Associate Professor Kennedy Erlwanger, your influence will certainly affect eternity.

“Unity is strength...when there is teamwork and collaboration, wonderful things can be achieved” (Mattie Stepanek) – for the supervision, demonstrating the power of teamwork and opportunities I never thought possible, thank you Dr. Eliton Chivandi.

“This work is not for yourselves-kill that spirit of self, and do not live above your people, but live with them. If you can rise, bring someone with you” (Charlotte Maxeke) - as you rose, you brought me with you, for your selflessness and supervision, thank you Miss Rachael Dangarembizi.

“Alone we can do so little, together we can do so much” (Helen Keller) - for animal handling and technical assistance, I am grateful to the Central Animal Services (CAS) Staff.

“None of the things I have done would have been accomplished without a true team effort” (Nick Lampson) – you sacrificed your time, gave valuable input during presentations and shared ideas during journal club meetings. A very special thank you to my colleagues in the gastrointestinal tract and nutrition laboratory: Ibrahim Ghandi, Davison Moyo, Trevor Nyakudya, Ingrid Malebana, Nomagugu Ndlovu, Busisani Lembede, Janine De Bruin, Karabo Rathebe, Jeanette Joubert and Ninette Lotter.

“Tell me and I forget, teach me and I may remember, involve me and I learn” (Benjamin Franklin) – you told me, taught me and most importantly involved me instilling a love for learning in me. For assistance with histology assays and reagent preparations, thank you Monica Gomes.
“Cultivate the habit of being grateful for every good thing that comes to you and to give thanks continuously. And because all things contributed to your advancement, you should include all things in your gratitude” (Ralph Waldo Emerson) - I am grateful for the financial assistance awarded to me by the National University of Science and Technology (Zimbabwe), University of the Witwatersrand: Faculty of Health Science Research Board & Financial Aid Office and National Research Foundation.

“Each person holds so much power within themselves that needs to be let out. Sometimes they just need a little nudge, a little direction, a little support, a little coaching and the greatest things can happen” (Pete Carroll) – to my friends and family, for cheering me on and for all the support, I am grateful.

“To our God and Father be glory for ever and ever. Amen” (Philippians 4:20, Bible) – I would like to thank God for seeing me through it all.
ABSTRACT

Fructose-rich diets and the early nutritional environment have been implicated in the increase in metabolic disorders worldwide. The “two hit” hypothesis has also come under the spotlight as consequences of early nutritional interventions have been shown to appear either spontaneously or after induction by a second intervention leading to worsened disease states. Current research is exploring the potential use of pharmacologically diverse phytochemicals such as ursolic acid (UA) to promote metabolic programming thereby imparting positive health benefits later in life. This study examined the effects of early administration of UA on the subsequent development of complications associated with diet-induced metabolic dysfunction in Sprague Dawley rats.

One hundred and seven suckling, six-day old male and female Sprague Dawley rats randomly received 10 ml/kg of either 0.5% dimethylsulphoxide (control), UA, 50% fructose solution or a mixture of 50% fructose and UA orogastrically for 14 days. They were then weaned onto normal rat chow and plain drinking water on day 21. At adulthood (day 70), half the number of rats in each treatment group either continued on plain drinking water or they received a 20% fructose solution as drinking fluid for eight weeks. Food and fluid intake, body mass gain, fasting blood triglyceride, and oral glucose tolerance were assessed before termination. On termination blood and tissue samples were collected to assess the effect of UA on growth, organ morphometry, adiposity, hepatic lipid storage and surrogate markers of health.

The effects of fructose were found to be dependent on the time of intervention and sex. In males, fructose consumption in adulthood resulted in a 7% increase in body mass and a 35% increase in circulating blood triglycerides which were not observed in females. A single fructose hit and fructose consumption both neonatally and in adulthood caused increased hepatic lipid storage in females by 32% and 67% respectively. In both sexes, fructose intake in adulthood caused decreases in food intake whilst increases in fluid intake were observed in female rats (P< 0.05). Fructose consumption had no effect on glucose tolerance, visceral adiposity, organ morphometry and surrogate health markers. Neonatal administration of UA caused a 6% increase in body mass in female rats and prevented excessive fructose-induced hepatic lipid storage in both male and female rats.
Although fructose administration had adverse effects in the liver, especially in female rats, neonatal intervention with UA was found to alter metabolism so as to protect against hepatic lipid accumulation. Therefore, UA is a phytochemical that shows great potential in the control of hepatic lipid metabolism and its metabolic complications.
TABLE OF CONTENTS

COVER PAGE .. i
DECLARATION .. ii
DEDICATION .. iii
CONFERENCE PRESENTATION... iv
ACKNOWLEDGEMENTS .. v
ABSTRACT .. vii
TABLE OF CONTENTS ... ix
LIST OF FIGURES .. xii
LIST OF TABLES ... xiii
LIST OF ABBREVIATIONS ... xiv

CHAPTER 1 : INTRODUCTION ... 1

1.1 Dissertation structure and study background ... 2
 1.1.1 Dissertation structure ... 2
 1.1.2 Background ... 2

1.2 Neonatal Programming ... 3
 1.2.1 Neonatal programming: preconceptual, periconceptual and preimplantation periods .. 4
 1.2.2 Neonatal programming: uterine period ... 5
 1.2.3 Neonatal programming: postnatal period ... 6

1.3 Metabolic syndrome ... 6
 1.3.1 Definitions of metabolic syndrome .. 7
 1.3.2 Metabolic syndrome and the dual burden of disease .. 8
 1.3.3 Metabolic syndrome and fructose ... 9
 1.3.3.1 Fructose metabolism .. 10

1.4 Treatment of metabolic syndrome ... 12
 1.4.1 Ursolic acid ... 13
 1.4.1.1 Anti-hyperglycaemic and anti-diabetic effects of ursolic acid 14
 1.4.1.2 Anti-obesity and anti-hyperlipidaemic effects of ursolic acid 14
 1.4.1.3 Hepatoprotective effects of ursolic acid ... 15
 1.4.1.4 Anti-inflammatory and anti-cancer effects of ursolic acid 15
 1.4.1.5 Other pharmacological effects of ursolic acid .. 16

1.5 Justification of the study .. 16

1.6 Aim of the study .. 17

1.7 Hypotheses .. 17
CHAPTER 2: MATERIALS AND METHODS ... 19

2.1 Ethical clearance for the study ... 20
2.2 Housing and general care of the animals .. 20
2.3 Chemicals and reagents used ... 20
2.4 Study design ... 21
2.5 Measurement of body mass ... 23
2.6 Oral glucose tolerance tests ... 23
2.7 Terminal procedures .. 24
 2.7.1 Tissue harvesting ... 24
2.8 Determination of hepatic lipid content .. 24
2.9 Clinical biochemistry assays ... 25
2.10 Determination of bone linear growth and estimation of bone density ... 25
2.11 Statistical analysis .. 26

CHAPTER 3: RESULTS .. 27

3.1 Effect of neonatal intake of ursolic acid on growth performance 28
 3.1.1 Body mass measurements ... 28
 3.1.2 Linear growth ... 31
3.2 Effect of neonatal intake of ursolic acid on the development of metabolic dysfunction ... 35
 3.2.1 Circulating metabolites .. 35
 3.2.2 Tolerance to an oral glucose load in adulthood 39
 3.2.3 Food and fluid intake in adulthood .. 44
 3.2.4 Adiposity ... 49
 3.2.5 Hepatic storage of lipids ... 51
3.3 Effect of neonatal intake of ursolic acid on the morphometry of the gastrointestinal tract and accessory organs .. 54
 3.3.1 Gastrointestinal tract (GIT) organs .. 54
 3.3.2 Accessory organs ... 57
3.4 Effect of neonatal intake of ursolic acid on the general health profile ... 60
 3.4.1 Surrogate markers of liver function .. 60
 3.4.2 Surrogate markers of renal function in adulthood 62
 3.4.3 Clinical biochemistry .. 64

CHAPTER 4: DISCUSSION ... 66

4.1 Growth performance ... 67
 4.1.1 Body mass ... 67
LIST OF FIGURES

Figure 1.1: Fructose and glucose metabolism in the liver .. 11

Figure 2.1: A diagrammatic representation of the study design... 22

Figure 3.1: Induction, weaning and terminal masses of male (A) and female (B) rats given
different treatments. ... 29

Figure 3.2: Representative radiograph images of femora and tibiae of male rats. 33

Figure 3.3: Representative radiograph images of femora and tibiae of female rats. 34

Figure 3.4: Effect of ursolic acid on glucose tolerance in male (A) and female (B) rats. ... 40

Figure 3.5: Effect of ursolic acid on the total area under the curve of oral glucose tolerance
test in male (A) and female (B) rats... 42

Figure 3.6: Hepatic lipid content in male (A) and female (B) rats in adulthood.............. 52
LIST OF TABLES

Table 1.1: Definitions of metabolic syndrome ... 7

Table 3.1: Effect of ursolic acid on tibial and femoral masses, lengths and Seedor indices in male and female rats ... 32

Table 3.2: Effect of ursolic acid on circulating metabolites; fasting blood glucose and triglyceride concentrations (P35) .. 36

Table 3.3: Effect of ursolic acid on circulating metabolites in male and female rats in adulthood ... 38

Table 3.4: Food intake in male and female rats in adulthood .. 45

Table 3.5: Fluid intake in male and female rats in adulthood 47

Table 3.6: Effect of ursolic acid on adiposity ... 50

Table 3.7: Effect of ursolic acid on the masses and lengths of GIT organs 55

Table 3.8: Effect of ursolic acid on masses of GIT accessory organs 58

Table 3.9: Effect of ursolic acid on surrogate markers of liver function 61

Table 3.10: Effect of ursolic acid on surrogate markers for renal function in male and female rats ... 63

Table 3.11: Effect of ursolic acid on general health markers in male and female rats 65
LIST OF ABBREVIATIONS

Acetyl Co-A: Acetyl coenzyme A
AD: Alzheimer’s disease
ADP: Adenosine diphosphate
AESC: Animal Ethics Screening Committee
AIDS: Acquired Immune Deficiency Syndrome
ALB: Albumin
ALP: Alkaline phosphatase
ALT: Alanine aminotransferase
AMP: Adenosine monophosphate
AMPK: AMP-activated kinase
AMY: Amylase
ANOVA: Analysis of variance
AST: Aspartate aminotransferase
ATP III: Adult treatment panel III
ATP: Adenosine triphosphate
BUN: Blood urea nitrogen
CAS: Central animal services
CO₂: Carbon dioxide
DMSO: Dimethylsulphoxide
FAO: Food and Agriculture Organisation
FW: Fructose water
GIT: Gastrointestinal tract
GLUT: Glucose transporter
HDL: High density lipoprotein
HFCS: High fructose corn syrup
HIV: Human Immunodeficiency Virus
IDF: International Diabetes Federation
IUGR: Intrauterine growth restriction
LDL: Low density lipoprotein
LI: Large intestines
LKB1: Liver kinase binding -1
MS: Metabolic syndrome
NAFLD: Non-alcoholic fatty liver disease
NCD: Non-communicable disease
NCEP: National cholesterol education program
NF-κB: Nuclear factor kappa-B
OGTT: Oral glucose tolerance test
PKA: Protein kinase A
PPAR-α: Peroxisome proliferator activated receptor-alpha
PPAR-γ: Peroxisome proliferator activated receptor-gamma
PW: Plain water
ROS: Reactive oxygen species
rTL: Relative to tibial length
SI: Small intestines
TBIL: Total bilirubin
TP: Total protein
UA: Ursolic acid
UHC: Universal Health Coverage
VLDL: Very low density lipoprotein
w/v: weight/volume
WHA: World Health Assembly
WHO: World Health Organisation
CHAPTER 1: INTRODUCTION
1.1 Dissertation structure and study background

1.1.1 Dissertation structure

This dissertation is comprised of six chapters; introduction, materials and methods, results, discussion, conclusions and recommendations and references. The introduction includes the literature review; exploring the concepts of neonatal programming, metabolic syndrome and the pharmacology of ursolic acid. The justification of the study, aims of the study and the hypotheses used are also included in the introduction. The materials and methods used in the study, results obtained, discussion and recommendations arising from the study follow in subsequent chapters.

1.1.2 Background

The indiscriminatory increase in metabolic syndrome (MS), characterised by several metabolic abnormalities, in children and adults worldwide is alarming (Harris, 2013, Ahima et al., 2016). Genetic factors have been implicated in the aetiology of the syndrome as epidemiological and animal studies have shown transgenerational and multigenerational links (Heindel et al., 2015, Abou and Mani, 2016). The rate at which the syndrome is spreading, however, defies a solely genetic cause (Li et al., 2011, Lillycrop and Burdge, 2011, Vickers, 2011). Therefore, the contribution of environmental factors (nutrition, exercise and early life conditions) is under the spotlight (Gadgil et al., 2015, Padmanabhan et al., 2016, Xiao et al., 2016).

As the pathogenesis of the syndrome is yet to be fully elucidated and the syndrome is multifactorial, there is no specific treatment available (Bruce and Byrne, 2009, Mahajan et al., 2010). Current interventions have resulted in the discontinued use of some pharmaceutical agents whilst marginal success rates have accompanied lifestyle changes (Giugliano et al., 2008, Kaur, 2014). Consequently, focus has shifted to the potential of phytochemicals abundant in fruits, herbs and vegetables (Graf et al., 2010, Akaberi and Hosseinzadeh, 2016). Pentacyclic triterpenes of the ursane group, such as ursolic acid (UA), have been shown to ameliorate metabolic syndrome associated abnormalities in adults (Rao et al., 2011, Sundaresan et al., 2012, Li et al., 2014). However, no work has been done to show the potential preventive effects of UA, if administered during the critical periods of sensitivity, against the development of metabolic syndrome later in life.
This study, therefore, investigated the effects of UA on early programming of subsequent diet-induced metabolic dysfunction in adulthood.

1.2 Neonatal Programming

Neonatal programming is a phenomenon that explains how the environment experienced in early life can have a long-term effect on the physiology, metabolism and therefore health of an individual (Martin-Gronert and Ozanne, 2012). The pre-conception, uterine and immediate postnatal periods are critical windows of physiological sensitivity (Aiken and Ozanne, 2013a, Wells, 2014). Environmental perturbations during these critical periods can trigger changes in organ and system development and if the changes are permanent, programming results (Gluckman et al., 2005, Barker, 2007, Cota and Allen, 2010). The foetus and neonate reprogram to favour early survival and improve success in an expected postnatal environment (Gluckman et al., 2008). A mismatch between the expected postnatal environment and the prevailing postnatal environment, however, can increase susceptibility to disease later in life (Cagampang et al., 2011, Velkoska and Morris, 2011, Reynolds et al., 2015).

Epidemiological and animal studies have shown that the outcomes of the early programming depend on the timing, duration, type and severity of insult and are at times sex-specific (Rinaudo and Wang, 2012, Aiken and Ozanne, 2013a, Goran et al., 2014). Changes in organ morphology and function programmed prenatally can be ameliorated or exacerbated postnatally (Ross and Desai, 2005). This is because neonatal programming can have either adverse or beneficial effects to disease later in life (Koletzko et al., 2011, Zohdi et al., 2012, Lewis et al., 2014). For instance, male rat pups receiving leptin supplementation during lactation then a high fat diet post-weaning were found to have lower body mass, fat accumulation and feed intake preventing metabolic dysfunction later in life (Pico et al., 2007, Priego et al., 2010). In addition, the consequences of an early/perinatal intervention can appear either spontaneously or they can be induced by another intervention after a period of latency (Heindel et al., 2015, Sun et al., 2015). The latter phenomenon is recognised in the “two hit” hypothesis for disease (Knudson, 1971, Day and James, 1998).

The two hit hypothesis states that a primary intervention (“first hit”) may sensitise an organ and lead to physiological alterations (Knudson, 1971, Erdélyi et al., 2013, Morris et al., 2015). The alterations may be immediately expressed leading to organ malfunction and
ultimately disease or may be suppressed (Bayer et al., 1999, Lahiri et al., 2007, Lahiri et al., 2009, Heindel et al., 2015). A second intervention (“second hit”), however, may unmask the suppressed effects leading to disease or amplify the effects of the “first hit” (Tsukamoto et al., 2009, Howard, 2013). For example, in the progression of non-alcoholic fatty liver disease (NAFLD), steatosis as a result of insulin resistance and/or obesity is usually the “first hit” (Dowman et al., 2010, Fabbrini et al., 2010, Tiniakos et al., 2010). Steatosis makes the liver vulnerable to a number of “second hits” including inflammatory cytokines, mitochondrial dysfunction and gut microbiota which ultimately lead to steatohepatitis and fibrosis (Tilg and Moschen, 2010, Pais et al., 2011, Lau et al., 2015).

In studies using sheep, maternal obesity in the periconceptual period (“first hit”) has been found to increase fat mass (Rattanatray et al., 2010), alter hepatic lipid metabolism (Nicholas et al., 2014) and insulin signalling (Nicholas et al., 2013) in the offspring. Maternal obesity in late gestation (“second hit”) results in the increased expression of lipogenic and adipogenic genes in the offspring (Muhlhauser et al., 2007, Long et al., 2015).

1.2.1 Neonatal programming: preconceptual, periconceptual and preimplantation periods

The maternal health status is important before, during and after conception as it has lasting metabolic effects on the offspring (Cardozo et al., 2011, Smith and Ryckman, 2015). In the preconception period, maternal metabolic syndrome alters the biochemical composition of follicular fluid, adversely affecting oocyte quality predisposing the resulting offspring to metabolic abnormalities (Leroy et al., 2012, Gu et al., 2015, Hou et al., 2016). Maternal over- and undernutrition result in epigenetic modifications which adversely alter oocyte maturity, blastocyst development and prenatal survival during the periconceptual and preimplantation periods (Robker, 2008, Ashworth et al., 2009, Niakan et al., 2012). Changes during these periods can alter whole cell lineages (Burdge et al., 2011, Aiken and Ozanne, 2013b). The extent to which the placenta can mitigate or exacerbate these changes, however, is unknown (Godfrey, 2002, Fowden et al., 2006). Undernutrition in these periods has been shown to increase susceptibility to cardiovascular anomalies including hypertension, small heart mass, excess in angiotensin converting enzyme and altered arterial vasodilation (Ashworth et al., 2005, Sinclair et al., 2007, Watkins et al., 2008, Watkins et al., 2010). Maternal overnutrition and obesity alter cardiovascular and behavioural mechanisms evidenced by distorted arterial contraction and dilation, pulse
pressure and stress responses in offspring (Gardner et al., 2004, Torrens et al., 2009, Hernandez et al., 2010). During embryonic development, maternal obesity and insulin resistance alter various metabolic pathways predisposing offspring to insulin resistance, hypercholesterolaemia and hyperleptinaemia in adulthood (Doblado and Moley, 2007, Hwang et al., 2010, Cardozo et al., 2011). Studies during this period have mostly been done in animals but are also important in the context of human in vitro reproduction where cardio-metabolic dysfunction is evident (Bertram and Hanson, 2001, Ceelen et al., 2008, Odom and Segars, 2010).

1.2.2 Neonatal programming: uterine period

Both maternal under and over-nutrition have adverse programming effects in utero. The uterine period is marked by vast gametogenesis as well as organogenesis such that nutritional manipulations cause permanent structural and reproductive alterations which affect functionality (Rhind et al., 2001). For example, in both altricial species and humans, the islets of the pancreas develop during gestation (Robb, 1961, Bouwens et al., 1997, Fowden and Hill, 2001). They then undergo remodelling during the first 2-3 postnatal weeks in altricial species and up to 4 years of age in humans (Robb, 1961, Hellerström and Swenne, 1991, Hill et al., 2000). Poor nutrition during these periods can alter islet morphology and function which may lead to increased susceptibility to diabetes in adulthood (Dahri et al., 1995, Fowden and Hill, 2001, McMillen and Robinson, 2005).

In under-nourished mothers, intrauterine growth restriction (IUGR) is a foetal coping mechanism which has been associated with epigenetic changes (Thompson et al., 2010, Xu et al., 2013). These changes lead to low birth weight babies who are likely to develop impaired glucose tolerance (Yajnik and Deshmukh, 2008), type-2 diabetes (Kanaka-Gantenbein, 2010), hypertension (Hinchliffe et al., 1992, Mackenzie and Brenner, 1995) and an increased risk of coronary heart disease (Eriksson et al., 2000) in adulthood. The loss of structural and functional units such as nephrons, cardiomyocytes and pancreatic cells due to IUGR may be instrumental in the metabolic complications experienced later in life (McMillen and Robinson, 2005, Dumortier et al., 2007, Zohdi et al., 2012).

One would expect that if the mother eats an obesogenic diet during pregnancy then the growing foetus reprograms and does not suffer from ill health after exposure to an obesogenic diet later in life. Studies, however, have shown that maternal overnutrition
leads to obesity and cardiovascular disorders in the offspring later in life (Li et al., 2011, Simmons, 2011, Brenseke et al., 2013). Obesity has been linked to leptin resistance and increased orexigenic neuropeptide production as foetal neural pathways, particularly those affecting feed intake, are reprogrammed in response to maternal overnutrition (Howie et al., 2009). Adipogenesis takes place during the late gestational phase and during the early postnatal period (Widdowson, 1968). Maternal overnutrition promotes fat accumulation in foetus which predisposes the offspring to obesity later in life (Samuelsson et al., 2008, Shankar et al., 2008). Excess circulating maternal lipids have also been associated with increasing the susceptibility of non-alcoholic fatty liver disease in offspring (Oben et al., 2010, Stewart et al., 2013).

1.2.3 Neonatal programming: postnatal period

In some mammals, organ development is incomplete at birth and continues in the early postnatal period (Patel and Srinivasan, 2011, Moore et al., 2015). Nutritional insults encountered during this suckling period can act as triggers for the induction of lasting programming effects (Guilloteau et al., 2009, Langley-Evans, 2009, Portha et al., 2011). Over-nutrition during the postnatal period is thought to program central appetite regulators as well as glucose and lipid metabolism increasing the risk of metabolic dysfunction in adulthood (Chen et al., 2009). Thus, an altered milieu in the immediate postnatal period with metabolic perturbations may cause epigenetic modifications resulting in changes in gene promoter region methylation thereby affecting gene expression in pathways associated with a range of physiologic processes (Jirtle and Skinner, 2007, Simmons, 2011). The phenotypic effects of these epigenetic modifications may not manifest until later in life, especially if they affect genes modulating responses to later environmental challenges such as dietary change (Gicquel et al., 2008, Szyf, 2009). Neonatal programming can be a result of interactions between various environmental stressors which can lead to increased susceptibility to some similar diseases (Heindel et al., 2015). It has therefore been implicated in the aetiology of the metabolic syndrome.

1.3 Metabolic syndrome

The metabolic syndrome is a cluster of cardiovascular risk determinants, including abdominal adiposity, glucose intolerance, hypertriglyceridaemia, non-alcoholic fatty liver disease (NAFLD) and decreased high density lipoprotein cholesterol (Alberti and Zimmet, 1998, National Cholesterol Education Program, 2002, Nomura and Yamanouchi, 2012).
Depending on sex, race, age, the population studied, setting (rural or urban area) and the
definition of the syndrome used, global prevalence of metabolic syndrome can range from
as low as less than 10% to as high as above 60% (Erasmus et al., 2012, Kaduka et al.,
2012, Bhat et al., 2015).

1.3.1 Definitions of metabolic syndrome

Including those for children and adolescents, as many as 40 definitions exist for metabolic
syndrome with the three most widely used shown below in Table 1.1 (Ford and Li, 2008,
Kassi et al., 2011, Thaman and Arora, 2013). Being a public health concern, the many
definitions have led to confusion in the identification, diagnosis and quantification of
individuals at risk and sufferers of the syndrome (Alberti and Zimmet, 1998, Blaha and
Elasy, 2006).

Table 1.1: Definitions of metabolic syndrome

<table>
<thead>
<tr>
<th>World Health Organisation (WHO)</th>
<th>International Diabetes Federation (IDF)</th>
<th>National Cholesterol Education Program Adult Treatment Panel III (NCEP ATP III)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Emphasises the presence of insulin resistance and any two of the following: ✓ Obesity ✓ Hypertension ✓ High triglyceride levels ✓ Reduced high density lipoprotein cholesterol (HDL) ✓ Microalbuminuria (Alberti and Zimmet, 1998)</td>
<td>• Emphasises the presence of central obesity (waist circumference with ethnicity specific values) plus any two of the following: ✓ Raised triglycerides ✓ Raised blood pressure ✓ Reduced HDL ✓ Raised fasting plasma glucose (International Diabetes Federation, 2005)</td>
<td>• Any three of the following: ✓ Abdominal obesity ✓ Elevated triglycerides ✓ Reduced HDL ✓ Raised blood pressure ✓ Raised fasting glucose (National Cholesterol Education Program, 2002)</td>
</tr>
</tbody>
</table>

Currently, a harmonised criteria is used to reduce disparities in research and to establish
the incidence and prevalence of MS worldwide (Alberti et al., 2009). In tandem with the
NCEP definition, it emphasises that there be no mandatory component and that any three out of five abnormal components be considered as MS. However, it was agreed that waist circumference (with ethnicity specific values) be used as a preliminary screening tool (Alberti et al., 2009).

1.3.2 Metabolic syndrome and the dual burden of disease

Traditionally, the cardio-metabolic risk factors of MS have been known to be widespread in developed nations whilst communicable diseases and undernutrition have mostly affected developing nations (Horton, 2007, Miranda et al., 2008, Ellulu et al., 2014). This has been partly due to the different nutritional and lifestyle trends. Globalisation, however, has and continues to bring a number of transitions in its wake: nutritional, epidemiological and health (Popkin, 2002, Popkin et al., 2012, Azuike et al., 2013). The nutrition transition promoted the global availability of cheap sugar (high corn fructose syrup), vegetable oils and fats resulting in direct competition with grain products (Drewnowski and Popkin, 1997, Chopra et al., 2002, Hawkes, 2005). Consequently, there have been changes in nutrition and disease trends.

In developing nations, a decline in coarse grain consumption has fuelled increased consumption of refined grains and calorie-rich food whilst fruit and vegetable intake remain inadequate (Popkin and Ng, 2007, Kearney, 2010, Khan and Talukder, 2013). This has concomitantly led to the epidemiological and health transitions in which MS and other non-communicable diseases (NCDs) have been on the rise (Popkin et al., 2012). In some countries, NCDs surpass mortality of infectious diseases like HIV/AIDS (Kelly and Fuster, 2010). Globalisation also gives rise to urbanisation which paves way for sedentary lifestyles which worsen MS (Ruel et al., 2008).

The nutrition transition promotes undernutrition in the form of micronutrient deficiency. Micronutrient deficiency weakens natural immunity which increases the susceptibility to communicable diseases exacerbating mortality rates (Katona and Katona-Apte, 2008, França et al., 2009, Singer, 2013). Despite agricultural technological advances, some countries in Africa, particularly war-torn nations (South Sudan and Democratic Republic of Congo) and those suffering from periodic droughts (parts of Ethiopia, Kenya, Uganda and Somalia, Eritrea), undernutrition in the form of macronutrient deficiency is still a problem (World Health Organisation, 2007, Louis and Hess, 2008, Bain et al., 2014). As a
result, most developing countries suffer the double burden of disease; both communicable and non-communicable diseases at household, community and population levels (Popkin, 2003, Kennedy et al., 2006). Most of these nations already have frail healthcare policies and systems and disintegrating social service structures (Sikosana et al., 1997, Bradshaw and Ndegwa, 2000, Foley, 2009). The emergence and contribution of MS to the burden of disease in developing countries therefore threatens to overwhelm the health sector (Evans, 2009, Bloom et al., 2012).

1.3.3 Metabolic syndrome and fructose

With the increase in fructose consumption coinciding with increases in metabolic irregularities, fructose has been implicated in the genesis and progression of MS (Douard and Ferraris, 2008, Khitan and Kim, 2013). Fructose is the natural sugar found in honey and in many fruits (Shils and Shike, 2006). It is also a constituent of table sugar, sucrose (Harvey and Ferrier, 2011). Sweetness values are a measure of the relative sweetness of a substance with the standard being sucrose with a value of 100 (Shallenberger and Acree, 1971). Crystalline fructose has a sweetness value of 175 making it the sweetest natural sugar (Shallenberger and Acree, 1971, Shallenberger, 2012). The commercial hydrolysis of maize/corn yields glucose which is enzymatically isomerised to give fructose in varying glucose:fructose ratios in the production of high fructose corn syrup (HFCS) (Considine, 2012, Marie and Piggott, 2013). It is used as an ingredient in sweetened beverages and many processed foods as it is a cheap source of sugar with long shelf life and moistenerisation benefits (Hanover and White, 1993, Berdanier et al., 2007, Tappy and Lê, 2010).

The consumption of commercially produced fructose is increasing whilst natural fructose consumption is decreasing or remaining constant globally (Marriott et al., 2009). Being sweet, fructose is highly palatable and is thus favoured by consumers resulting in overfeeding (Tappy and Lê, 2010, Gibney et al., 2013). High fructose consumption, however, leads to metabolic dysfunction; increased concentrations of plasma free fatty acids, leptin, triglycerides, uric acid and abdominal adiposity (Hallfrisch, 1990, Melanson et al., 2008, Alzamendi et al., 2009). Impaired insulin sensitivity also results (Aeberli et al., 2013, Khitan and Kim, 2013). In a bid to curb the detrimental metabolic effects of sugars such as fructose, “sugar-tax” has been introduced in countries like Mexico (sugar-sweetened beverages), Finland (sweets, ice-cream and soft drinks) and France (sweetened
beverages) (Escobar et al., 2013, Cornelsen and Carreido, 2015). Many countries like South Africa are in the process of implementing the same policy (National Department of Health, 2012). Among all the monosaccharides, fructose has received widespread attention mainly due to the way it is metabolised in the body.

1.3.3.1 Fructose metabolism

The metabolic pathways of fructose and glucose in the liver are shown in Figure 1.1 overleaf. At low concentrations in the small intestine lumen, fructose is converted to glucose (Mayes, 1993, Douard and Ferraris, 2013). At high concentrations, however, it is absorbed and metabolised in the liver resulting in very small amounts of fructose (about 0.01 mmol/L) entering systemic circulation (Mayes, 1993, Bray, 2007). Non-insulin dependent glucose transporters, GLUT-5 and GLUT-2, facilitate the movement of fructose into intestinal cells and into the liver respectively (Keembiyehetty et al., 2006, Manolescu et al., 2007, Thorens and Mueckler, 2010). The testes, spermatozoa, kidneys, adipose tissue, muscle and to a lesser extent the brain express GLUT-5 (Gropper and Smith, 2012, Roy and Krishna, 2013). In cells, fructose is converted to fructose-1-phosphate by the enzyme fructokinase (Ishimoto et al., 2012). Through catalysis by aldolase B, fructose-1-phosphate is then converted to the trioses: glyceraldehyde-3-phosphate and dihydroxyacetone phosphate, which are the precursors for phospholipid and triacylglycerol synthesis (Harvey and Ferrier, 2011, Seidler, 2013).

Glucose, in comparison, is transported into cells by an insulin dependent transporter, GLUT-4 (Huang and Czech, 2007, Douard and Ferraris, 2013). It is converted to glucose-6-phosphate by hexokinase then to the triose phosphates and finally into pyruvate during glycolysis (Harvey and Ferrier, 2011, Bender, 2014). Glucose metabolism is highly regulated by the energy status of the cell through negative feedback mechanisms (Lieberman et al., 2006, Gropper and Smith, 2012). Phosphofructokinase, a rate limiting enzyme, catalyses the formation of fructose-1,6-bisphosphate (precursor of the triose phosphates) and is inhibited by citrate and adenosine triphosphate (Berg et al., 2002, Bender, 2014). The formation of triose phosphates in fructose metabolism, however, is void of this regulatory step thus it is a source of abundant and unregulated carbon atoms (Elliott et al., 2002, Rippe, 2014).
Fructose and glucose metabolism in the liver (Tappy and Lê, 2010). Abbreviations: -P; Phosphate, Acetyl Co-A; Acetyl coenzyme A, CO₂; carbon dioxide, ATP; Adenosine triphosphate, ADP; Adenosine diphosphate, AMP; Adenosine monophosphate GLUT 2; glucose transporter 2.

Fructose facilitates *de novo* hepatic lipogenesis, lactate production, glycogen synthesis and gluconeogenesis (Park et al., 1992, Shils and Shike, 2006). This puts it at the crux of the progression of MS as accumulation of hepatic lipids contributes to dyslipidaemia, NAFLD and tissue-specific insulin resistance (Birkenfeld and Shulman, 2014, Perry et al., 2014). Furthermore, overconsumption as a result of fructose feeding contributes to obesity (Bray et al., 2004, Brown et al., 2008). Fructose metabolism also results in the depletion of hepatic adenosine triphosphate (ATP), which results in the production of adenosine monophosphate (AMP) and uric acid fuelling hyperuricaemia (Van den Berghe, 1985, Hallfrisch, 1990, Johnson et al., 2013). Hyperuricaemia has been implicated in the pathogenesis of insulin resistance leading to diabetes and hypertension (Gustafsson and Unwin, 2013, Johnson et al., 2013, Soltani et al., 2013). Putative mechanisms include endothelial dysfunction through reduction of nitric oxide, induction of the renin
angiotensin system and smooth muscle cell proliferation (Khosla et al., 2005, Sanchez-Lozada et al., 2005, Corry et al., 2008).

1.4 Treatment of metabolic syndrome

There is no specific treatment for MS (Reddy and Rao, 2006, Giugliano et al., 2008). As such, lifestyle modifications and pharmaceutical agents are being used to manage MS (Marvasti and Adeli, 2010, Brenseke et al., 2013). Lifestyle changes such as body mass reduction and increased physical activity are normally the first-line of therapy in the management of MS (Ricanati et al., 2011, De Lorgeril, 2012). This is because they can improve all facets of the syndrome (Dalle Grave et al., 2010, Yamaoka and Tango, 2012, Hartley, 2014). With increasing severity of MS, however, pharmaceutical agents are used together with lifestyle modifications (Rubio-Ruiz et al., 2013).

Lipid lowering drugs which reduce low density lipoprotein cholesterol (statins) and increase high density lipoprotein cholesterol (niacin and fibrates) have been used to manage MS (Michos et al., 2012, Elkes, 2016). Insulin sensitising drugs such as metformin and peroxisome proliferator activated receptor gamma (PPAR-γ) agonists with anti-diabetic properties (thiazolidinediones) are also used to reduce blood glucose in the management of MS (Derosa and Maffioli, 2010, Rojas and Gomes, 2013, Song, 2016). The undesirable side effects, low efficacy and high cost associated with the use of pharmaceutical agents have made them inaccessible and have led to their discontinued use leaving few drugs that can be used (Elangbam, 2009, Rodgers et al., 2012). This is a hindrance to one of WHO’s overarching goals of universal health coverage (UHC).

The UHC “seeks to ensure that all people have access to promotive, preventive, curative and rehabilitative health services, of sufficient quality to be effective, while also ensuring that they do not suffer financial hardship when paying for these services” (WHO, 2015). With WHO predicting that deaths from NCDs such as MS will increase from 38 million to 52 million by 2030, there has been an increased use of traditional medicine such as ethnomedicines (Eddouks et al., 2012, WHO, 2014, WHO, 2015). The increased use of ethnomedicines was evident in Korea where annual expenditure on traditional medicine rose from US$ 4.4 billion in 2004 to US$ 7.4 billion in 2009 (Johnson, 2016). This trend was also apparent globally as an estimated US$83 billion was spent on traditional medicine in 2008 and an exponential rate of increase observed (Robinson and Zhang, 2011). Consumers believe that “natural means safe” and ethnomedicines are cheaper, more locally
and readily available than conventional medicine (Cooper and Yamaguchi, 2013, WHO, 2015). In most developing countries ethnomedicines provide the bulk of primary healthcare (Payyappallimana, 2010, WHO, 2015). Additionally, traditional medicine is also being widely used in developed countries with 70% of Canadians, 82% of Australians and over 100 million users in Europe (Johnson, 2016). The World Health Assembly (WHA) and WHO have therefore put in place strategies to facilitate the safe use, regulation and promotion of ethnomedicines (World Health Assembly, 2009, WHO, 2015). These strategies have facilitated the integration of traditional and complementary medicine into the health system in countries such as China, Korea and Switzerland (Government of China, 2010, Swiss Confederation, 2011, Frass et al., 2012).

With regards to MS, researchers are currently investigating the therapeutic potential of naturally occurring phytochemicals which are abundant in fruits and vegetables (Kim et al., 2011, Holubková et al., 2012). Many of the phytochemicals display pharmacological and biochemical effects that include inhibition of several different enzyme systems related to absorption and metabolism of carbohydrates and lipids (Yoshizumi et al., 2006, de Melo et al., 2010, Gupta and Prakash, 2014). Pentacyclic triterpenes belonging to the lupane, oleanane and ursane series are some of the phytochemicals being explored (Hasani-Ranjbar et al., 2009, Alqahtani et al., 2013, Castellano et al., 2013). As most of these phytochemicals are taken orally, their interaction with the gastrointestinal tract (GIT) is of great importance (Gavhane and Yadav, 2012, McClements et al., 2015). Studies have shown that although development of the GIT is pre-programmed, nutritional manipulation in the intrauterine and early postnatal periods can affect it resulting in precocious maturation leading to higher body mass gains and enhanced bone development (Linderoth et al., 2005, Puzio et al., 2007). Ursolic acid is one of the phytochemicals being explored in the management and treatment of MS (Li et al., 2014, Nazaruk and Borzym-Kluczyk, 2014).

1.4.1 Ursolic acid

Ursolic acid (3β-hydroxy-urs-12-en-28-oic acid) is an ursane pentacyclic triterpenoid that exists naturally in plants as a free acid or aglycone (Liu, 1995, Sun et al., 2006). It has been isolated from a number of fruits including apples (He and Liu, 2007), guavas (Begum et al., 2004), loquats (Zhou et al., 2007) and olives (Somova et al., 2003). It has also been isolated from medicinal herbs such as rosemary (Huang et al., 1994), basil (Chiang et al.,
2005), sage (Le Men and Pourrat, 1952) and thyme (Ismaili et al., 2001). Being biologically active both topically and internally, UA exhibits a wide range of pharmacological effects.

1.4.1.1 Anti-hyperglycaemic and anti-diabetic effects of ursolic acid

Diabetes mellitus is a result of altered insulin secretion and/or insulin action which perturbs fat, protein and carbohydrate metabolism resulting in chronic hyperglycaemia (Alberti and Zimmet, 1998). Lowering postprandial blood glucose concentration is one of the therapeutic strategies employed in managing diabetes mellitus (Nathan et al., 2009, Nyenwe et al., 2011). Ursolic acid extracted from *Cornus officinalis* Sieb. et Zucc (Gao et al., 2008) and *Osmanthus fragrans* (Kang et al., 2012) was found to lower fasting blood glucose and postprandial glucose concentrations in diabetic rats.

1.4.1.2 Anti-obesity and anti-hyperlipidaemic effects of ursolic acid

Adipocytes secrete hormones (leptin and adiponectin), store lipids and are insulin sensitive (Camp et al., 2002, Havel, 2004). Alterations in adipocyte metabolism have adverse effects, with obesity being marked by hyperplasia and hypertrophy of adipocytes (Drolet et al., 2008, Jo et al., 2009, Stephens, 2012). Ursolic acid stimulates lipolysis in mature 3T3-L1 adipocytes through a cyclic-AMP dependent protein kinase A (PKA) pathway (Li et al., 2010). Furthermore, UA suppresses pre-adipocyte differentiation and adipogenesis through the liver kinase binding-1/AMP-activated protein kinase (LKB1/AMPK) pathway in 3T3-L1 adipocytes, exhibiting anti-obesity properties (He et al., 2013).

Dietary fat is thought to promote body fat storage more effectively than dietary carbohydrates leading to metabolic anomalies (Consultation, 1998, Brown et al., 2008). However, fat absorption is only possible after fat digestion by lipase (Gargouri et al., 1997). Following oral administration of lipid emulsion in rats, UA has been shown to have lipase-inhibiting properties which prevent increases in plasma triacylglycerol concentrations (Kim et al., 2009). In non-obese mice, UA promotes thermogenesis, energy expenditure increase of brown fat which aids obesity management strategies (Kunkel et al., 2012).
1.4.1.3 Hepatoprotective effects of ursolic acid

The liver is the body’s metabolic hub (Wall and Porter, 2014, Feldman et al., 2015). It is responsible for detoxification and the synthesis, metabolism, storage and redistribution of carbohydrates, proteins and lipids (Berg et al., 2002, Rui, 2014). Hypercaloric diets, sedentary lifestyles and drug use have deleterious effects on the liver resulting in NAFLD, cholestasis and liver injury (Epstein et al., 1998, Lee, 2003, Zelber-Sagi et al., 2007, Masarone et al., 2014). Thioacetamide (Akhtar and Sheikh, 2013), galactosamine (Keppler et al., 1968) and carbon tetrachloride (Hübner, 1965, Shi et al., 1998) are used to induce hepatotoxicity in rats as they decrease hepatocyte viability as well as disrupt bile secretion. Pre-treatment of rats with UA improves hepatocyte viability as well bile secretion in a similar manner as the hepatoprotective drug silymarin (Binduja et al., 1996, Feher and Lengyel, 2012). Ursolic acid ameliorates paracetamol-induced hepatotoxicity in rats exhibiting its anti-cholestatic and anti-choleretic effects in rats (Shukla et al., 1992).

Thought to be the hepatic facet of MS, NAFLD encompasses steatosis, inflammation, hepatocellular injury and fibrosis ultimately progressing to liver cirrhosis and hepatocellular carcinoma (Angulo, 2002, Dowman et al., 2010, Takahashi and Fukusato, 2014). Endoplasmic reticulum stress has been implicated in fuelling the progression of steatosis to more aggressive forms of NAFLD (Gentile et al., 2011, Lake et al., 2014). Li et al. (2015) administered UA to diabetic mice and L02 palmitic acid stimulated cells. Hepatic steatosis, liver mass and concentrations of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were reduced in the diabetic rats whilst lipid accumulation was reduced in L02 cells. Through enhanced lipid β-oxidation and inhibition of endoplasmic reticulum stress, UA exhibits hepatoprotective properties which may be crucial in NAFLD therapy.

1.4.1.4 Anti-inflammatory and anti-cancer effects of ursolic acid

Inflammation is a non-specific, adaptive immune response to any stimuli that cause cell injury (Markiewski and Lambris, 2007). In response to tissue damage, inflammation allows for repair of damaged tissue (Krafts, 2010) whilst in pathological conditions such as cancer, chronic inflammation may result in tissue damage and organ dysfunction (Coleman and Tsongalis, 2009, Dubois, 2015). Ursolic acid exhibits its anti-inflammatory property through attenuation of inducible nitric oxide synthase and cyclooxygenase-2 expression in the murine macrophage cell line, RAW264.7 (Suh et al., 1998, Ryu et al., 2000). Ursolic
acid also has anti-leukaemic and anti-cancer properties through its suppression of nuclear factor kappa-B (NF-κB) activation (Najid et al., 1992, Shishodia et al., 2003). The anti-cancer effect of UA has also been illustrated in lung cancer (Kim et al., 2015), prostate cancer (Park et al., 2013), ovarian cancer (Wang et al., 2009), breast cancer (Gim et al., 2010) and hepatocellular carcinoma (Yang et al., 2010) cell lines through apoptosis. Ursolic acid has been used in cancer Phase I clinical trials (Zhu et al., 2013, Qian et al., 2015).

1.4.1.5 Other pharmacological effects of ursolic acid

Ursolic acid displays cardiotonic (Somova et al., 2004), anti-ulcer (Shih et al., 2004) and nephroprotective (Pai et al., 2012) properties in studies using rodents. Studies have demonstrated UA’s anti-viral effects against human immunodeficiency virus (Quéré et al., 1996) and hepatitis C (Kong et al., 2013) in NS5B cells. Extracts from UA containing plants Satureja parvifolia, Morinda lucida and Mimusops caffra exhibited anti-malaria activity against chloroquine-sensitive Plasmodium falciparum strains (Baren et al., 2006, Cimanga et al., 2006, Simelane et al., 2013). In mice, oral administration of UA was found to reduce parasitic loads during the acute phase of Trypanosoma cruzi infections (da Silva Ferreira et al., 2013). In the nematodes that cause elephantiasis, Brugia malayi and Wuchereria bancrofti, UA induced apoptosis by altering enzyme activity in worms isolated from infected people (Saini et al., 2014). Ursolic acid has also been shown to be neuroprotective exhibiting anxiolytic (Pemminati et al., 2011), anti-nociceptive (González-Trujano et al., 2012, Verano et al., 2013) and anti-depressant like (Machado et al., 2012, Colla et al., 2014) properties in rodents.

1.5 Justification of the study

Most studies assessing the effects of UA on metabolic dysfunction used adult animals primarily and used UA as a treatment method (Jayaprakasam et al., 2006, Jang et al., 2009, Rao et al., 2011). Metabolic dysfunction, however, has the potential to be reversed by nutritional and therapeutic interventions during physiologically sensitive periods (Vickers, 2011). Additionally, the prevalence of MS seems to be sex-biased with females being more prone to the syndrome than males (Tonstad et al., 2007, Houti et al., 2016). With the manifestation of the metabolic abnormalities in different organs being sex-specific and with most studies having been done in males, there is need for sex-specific studies (Beigh and Jain, 2012, Tsai et al., 2014). Therefore, although UA displays great pharmacological
potential to ameliorate MS, there is a paucity of data of intervention strategies using UA during the period of developmental plasticity. As such, this study aimed to investigate the effects of UA on neonatal programming and to assess if it could protect against the development of diet-induced metabolic dysfunction in adulthood in Sprague Dawley rats in a sex-dependent manner.

1.6 Aim of the study

The main aim of this study was to determine the effect of UA on neonatal programming of metabolic dysfunction in rats fed a high fructose diet and to assess its potential to protect against the subsequent development of metabolic syndrome in adulthood. The specific objectives of this study were to determine the effects of UA on;

1. neonatal programming of diet-induced metabolic dysfunction and the subsequent health outcomes in adulthood.
2. growth performance of rats by measuring;
 a. body mass gain.
 b. linear growth (length, mass and density of the long bones: femur and tibia).
3. the development of metabolic dysfunction by measuring;
 a. circulating levels of metabolites: glucose, cholesterol and triglycerides.
 b. tolerance to an oral glucose load.
 c. food and fluid intake.
 d. adiposity.
 e. hepatic storage of lipids.
4. the morphometry of the GIT (and accessory organs) by measuring lengths and masses of visceral organs.
5. the general health profile of the rats by measuring;
 a. surrogate markers of liver function: alanine transaminase (ALT), alkaline phosphatase (ALP), total bilirubin and albumin.
 b. surrogate markers of renal function: creatinine and blood urea nitrogen.
 c. clinical biochemistry: total protein, calcium, phosphate, amylase and globulins.

1.7 Hypotheses

The null hypothesis (H₀) and alternate hypothesis (H₁) for the study were:
\(H_0: \) Ursolic acid has no effect on neonatal programming and does not protect against the subsequent development of metabolic dysfunction in Sprague Dawley rats fed a high fructose diet in the neonatal period and/or in adulthood. In addition, that no differences exist between male and female responses to UA treatment.

\(H_1: \) Ursolic acid has an effect on neonatal programming and protects against the subsequent development of metabolic dysfunction in Sprague Dawley rats fed a high fructose diet in the neonatal period and/or in adulthood. In addition, that differences exist between male and female responses to UA treatment.
CHAPTER 2: MATERIALS AND METHODS
2.1 Ethical clearance for the study

All animal experiments were carried out according to protocols approved by the Animal Ethics Screening Committee (AESC) of the University of the Witwatersrand, AESC number 2014/49/D (see appendix for certificate).

2.2 Housing and general care of the animals

Sprague Dawley dams with suckling male and female rat pups from the Central Animal Services (CAS) at the University of the Witwatersrand were used in the study. Each dam, with a litter of 9-12 pups, was housed in perspex cages lined with wood shavings in temperature (24°C±2°C), light (12h light:12h dark; 0700:1900 clock time) and ventilation controlled rooms. A commercial rat chow (Epol®, Johannesburg, South Africa) and clean drinking water were provided ad libitum for the dams. After weaning, the weaned rats were housed individually as described above.

2.3 Chemicals and reagents used

Dimethylsulphoxide (DMSO; Sigma-Aldrich, France) was reconstituted in distilled water to a final concentration of 0.5% and used as vehicle. Ursolic acid (Sigma-Aldrich, France) was prepared by dissolving 2 mg of ursolic acid in 10 μl of DMSO and making up to 2 ml with distilled water. The UA was prepared in bulk, aliquoted to 2 ml portions and stored in microtubules (Eppendorf) at -20°C until use. Fructose (Nature’s choice, South Africa) was used to induce metabolic dysfunction. According to the manufacturer’s product information label, the nutritional composition of the fructose was 1680 kJ energy, 0 g protein, 0.2 mg/100 g sodium, 99.8 g/100 g carbohydrates, 0 g fat and 0 g fibre. Fructose (20% w/v) was prepared by dissolving 20 g of fructose in tap water and making it up to 100 ml. Fructose (50% w/v) was prepared by dissolving 50 g of fructose in distilled water and making it up to 100 ml. The commercial rat chow (Epol®, Johannesburg, South Africa) had the following nutritional composition: 170 g/kg protein, 25 g/kg fat, 70 g/kg fibre, 25 g/kg calcium, 6 g/kg phosphorus and 6.5 g/kg lysine. Glucose solution (50% w/v; Radchem, South Africa) was made by dissolving 5 g of glucose in distilled water and filling it up to the 10 ml mark. A drop of food colouring (no nutritional value) (Robertsons, Retailer Brands (Pty) Ltd, South Africa) was added to 5 l of the drinking fluids and used to distinguish the fluids from one another.
2.4 Study design

Figure 2.1 overleaf shows a diagrammatic representation of the study design which aimed to simulate a ‘one hit’ and ‘two hit’ interventional study. A total of one hundred and seven male and female suckling pups were used (from 11 litters; 9-12 pups per litter). In the first stage of the study (which was from postnatal day 6 (P6) to P20), the first nutritional intervention “first hit” was introduced to induce neonatal programming. The pups in each litter were randomly assigned to four main treatment groups, each with a minimum of 26 pups in each treatment group. The rat pups were uniquely identified by marking with colour coded, non-toxic permanent marker ink on their tails. The rat pups received an oral administration of one of the following treatments;

Group 1 (control): *0.5 % DMSO (10 ml/kg b.w). The DMSO was used as a vehicle to dissolve the UA (Sundaresan et al., 2012) (n =27).*

Group 2: *UA (10 mg/kg b.w) reconstituted in DMSO. We used this dose of UA because previous studies reported its effectiveness in reversing the symptoms of metabolic syndrome (visceral adiposity, blood glucose concentrations and plasma lipids) in mice fed a high fat diet (Rao et al., 2011) (n =27).*

Group 3: 50% fructose solution (10 ml/kg b.w) (n =27)

Group 4: *UA (10 mg/kg b.w) + 50% fructose solution (n =26).*

*= 10 ml/kg b.w

Orogastric administration of the treatments was done once daily between 09:00 and 11:00 using an orogastric tube mounted on a 1 ml syringe. In-between gavaging, the pups were allowed to suckle freely on their respective dams.

In the second phase of the study (non-interventional phase), the pups were weaned on P21 and housed individually. They were fed a commercially supplied rat chow and supplied with clean plain drinking water *ad libitum* until P69. In order to assess if the interventions in the first phase had any early metabolic effects on the pups, metabolic assays were done on P35. After overnight fasting, blood was taken from a pin prick at the tip of alcohol-swab sterilised tails of the rats (Parasuraman et al., 2010). The blood was used to determine fasting glucose and triglyceride concentrations. A calibrated glucometer (Ascensia, Ireland) was used to determine blood glucose concentration whilst a calibrated Accutrend
triglyceride meter (Roche Diagnostics, Germany) was used to determine blood triglyceride concentration as per manufacturer’s instructions.

Figure 2.1: A diagrammatic representation of the study design. Abbreviations – DMSO; dimethylsulphoxide, UA; ursolic acid, FR; fructose, OGTTs; oral glucose tolerance tests, PW; plain drinking water and FW; fructose in drinking water, P; postnatal day.

The third phase of the study (second intervention; “second hit”) started on P70 until termination (P129). Normal rat chow was given to all the rats, however, half the number of rats in each group were assigned to one of two treatments (with males and females in each group) wherein they received either plain drinking water or 20% fructose in drinking water. Administration of 20% fructose for eight weeks has been shown to induce obesity, dyslipidaemia, hyperglycaemia, hyperinsulinaemia and hypertension in rats (Barros et al., 2007, Mamikutty et al., 2014). Twice a week, the drinking bottles were washed and changed and fresh solutions were prepared and provided. A drop of food colouring was added to 500 ml of either plain drinking water or 20% fructose in drinking water. This was in order to differentiate the fluids from one another. During this phase of the study, food
and fluid intake were measured weekly using modification of Mamikutty et al. (2014) formulae:

Average daily food intake = \[
\frac{\text{initial feed mass (g) – final feed mass (g)}}{\text{number of days the feed was supplied}}
\]

Average daily fluid intake = \[
\frac{\text{initial fluid volume (ml) – final fluid volume (ml)}}{\text{number of days the fluid was supplied}}
\]

Both daily food and fluid intake were then expressed and reported as a percentage of body mass as g/100 g and ml/100g respectively (Ghezzi et al., 2012).

The feed was weighed using a balance (Snowrex Electronic Scale, Clover Scales, Johannesburg) whilst a calibrated measuring cylinder was used to determine the volume of the fluids.

2.5 Measurement of body mass

In the first phase, the pups were weighed (Snowrex Electronic Scale, Clover Scales, Johannesburg) daily to ensure that the correct dosage of the various treatments was administered. Post-weaning, the rats were weighed twice every week in order to assess growth. The dams were also weighed twice every week as part of routine health checks.

2.6 Oral glucose tolerance tests

After eight weeks of intervention, tolerance to an oral glucose load was assessed on P126. The animals were habituated in perspex restrainers for an hour for three consecutive days prior to the procedure. The rats were fasted overnight but had ad libitum access to drinking water. Following sterilisation of the tail as described in Section 2.4, a fasting blood sample was taken following a pin-prick at the tip of the tail (time=0). Glucose (2 g/kg b.w) was then administered orogastrically and blood samples were collected from the tip of the tail after 15, 30, 60, 120 and 180 minutes to determine systemic glucose concentrations (Ghezzi et al., 2012). Blood glucose was determined using a calibrated glucometer (Ascensia, Ireland) according to the manufacturer’s instructions. The rats were returned to their designated feeding regime for 48 hours prior to termination. The total area under the curve (AUC) was calculated from the OGTT results.
2.7 Terminal procedures

The rats were terminated on P129 after an overnight fast but had *ad libitum* access to drinking water. Fasting triglyceride concentrations were assessed using blood taken from a pin prick at the tip of the sterilised tail as previously described. A calibrated Accutrend triglyceride meter (Roche Diagnostics, Germany) was used to determine triglyceride concentration as per manufacturer’s instructions. The rats were euthanased using sodium pentobarbitone (200 mg/kg b.w).

2.7.1 Tissue harvesting

After euthanasia, the thorax was opened for organ harvesting and blood collection via cardiac puncture. Blood was collected into heparinised and plain tubes (BD Vacutainer, Plymouth, UK) and centrifuged (Rotofix 32A, Hettich Zentrifugen, Germany) at 4 000 G for 15 minutes. The supernatant (plasma/serum) was then pipetted into microtubes (Eppendorf) before being stored at -20°C for further analysis. The heart, liver, stomach, pancreas, caecum, small and large intestines, visceral and epididymal fat were carefully dissected out. The stomach, small intestines, caecum and large intestine were weighed after being gently squeezed to remove any wastes. The lengths of large and small intestines were measured using a ruler mounted on a dissection board. The masses of visceral (and epididymal in males) fat pads, heart, pancreas, liver and kidneys were also measured using a balance (Presica 310M, Switzerland). The liver was stored at -20°C for further analysis.

All organ masses were corrected relative to tibial length by using the formula:

\[
\text{Organ mass relative to tibial length} = \frac{\text{organ mass (g)}}{\text{length of tibia (mm)}}
\]

\text{(Nunes-Souza et al., 2016)}.

2.8 Determination of hepatic lipid content

Determination of the liver lipid content was done by solvent extraction at the Agricultural Research Council (Irene Analytical Services Laboratory) using the Tecator Soxtect method (Official Methods of Analysis of Analytical Chemists, 2005). The liver samples were freeze-dried, milled and 1 g was placed into a pre-weighed extraction thimble. Fat-free cotton wool was used to plug the thimble before it was placed on a thimble holder. Petroleum ether was added to the extraction cups before the cups were placed onto heating pads. The extraction process involved four stages: boiling (30 minutes), rinsing (30
minutes), petroleum ether recovery (10 minutes) and drying (30 minutes at 90 ± 5°C). The extraction cups were then allowed to cool in a dessicator before the amount of the oil was determined using the following formula:

\[
\text{% fat} = 100\left(\frac{\text{mass of cup plus fat} – \text{mass of cup}}{\text{mass of sample}}\right)
\]

The test was done in triplicate.

2.9 Clinical biochemistry assays

An IDEXX VetTest Chemistry Analyser (IDEXX VetTest® Clinical Chemistry Analyser, IDEXX Laboratories Inc., USA) was used to measure the serum concentrations of alanine aminotransferase, alkaline phosphatase, blood urea nitrogen, creatinine, phosphate, calcium, total protein, albumin, globulin, total bilirubin and amylase as per manufacturer’s instructions.

2.10 Determination of bone linear growth and estimation of bone density

The femur and tibia from the right leg of each rat were cleaned of non-calcified tissue and oven-dried (Salvis®, Switzerland) for five days at a temperature of 50°C. Bone dry mass was measured using a balance (Presica 310M Laser, Johannesburg, South Africa) whilst bone length was measured using venier calipers (Hi-impact, Dejuca, South Africa) were used to measure bone length. Tibia length was measured between the tibia head and medial malleolus. Femur length was measured between the greater trochanter and medial condyle. The Seedor index was used to estimate bone density and was calculated using the following formula;

Seedor index = mass of bone (mg)/length of bone (mm) (Seedor, 1991, Almeida et al., 2008).

Radiographs of the bones were also taken to subjectively assess bone density using a Fuji film X-ray machine (Industrial X-ray film FR; Fuji Photo Film Co., Ltd, Tokyo, Japan). The bones were placed on a photographic plate, 1 metre away from the X-ray light source set at 4.8 kVp, 0.71 mA per plate for 10 seconds.
2.11 Statistical analysis

All data are expressed as mean and standard deviation and were analysed using Graph Pad Prism 5 (Graph Pad Software, San Diego, California, USA). Statistical significance was set at 5%. Linear growth, visceral organ mass, concentrations of circulating metabolites, liver lipids and general health profile markers were analysed using one-way analysis of variance (ANOVA). Body mass changes, oral glucose tolerance tests and food and fluid intake were analysed using the two-way repeated measures ANOVA with treatment and time as main effects. Unpaired student t-tests were used to analyse sex differences of the above parameters. The Bonferroni post hoc test was used to detect differences between and or within groups whenever the ANOVA showed significant differences or significant main effects.
CHAPTER 3: RESULTS
3.1 Effect of neonatal intake of ursolic acid on growth performance

3.1.1 Body mass measurements

Figure 3.1 shows the induction, weaning and terminal masses of male (A) and female (B) rats across all the treatment groups. The treatments given in the neonatal phase had no adverse effects on growth of the rats across the treatment groups (P > 0.05). There was significant growth, from induction to weaning and from weaning to termination within all treatment groups in both sexes (P < 0.0001). In males, a late fructose hit, that is, rats receiving dimethylsulphoxide (DMSO) in the neonatal phase and fructose in adulthood (DMSO+FW) had increased terminal mass compared to rats receiving DMSO neonatally and plain water in adulthood (DMSO+PW) (main effects of time (P < 0.0001), treatment (P = 0.079), and their interaction (P = 0.0073)). No differences were observed in rats receiving an early fructose hit (fructose neonatally and water in adulthood; FR+FW) as well as a double fructose hit (fructose neonatally and in adulthood) (P > 0.05). Ursolic acid (alone and in combination with fructose) had no effects on body mass (P > 0.05).

In females, UA administration alone promoted increases in terminal body mass; rats receiving UA neonatally with fructose in adulthood (UA+FW) had significantly higher terminal masses than the group receiving dimethylsulphoxide in the neonatal phase and fructose in the third phase (DMSO+FW) (main effects of time (P < 0.0001) treatment (P = 0.21), and their interaction (P = 0.37)). No differences were observed in rats receiving a late fructose hit as well as a double fructose hit (fructose neonatally and in adulthood; FR+FW) (P > 0.05). A comparison of the sexes revealed that male rats had significantly greater body mass gains than female rats across all treatments (P < 0.0001).
Figure 3.1: Induction, weaning and terminal masses of male (A) and female (B) rats given different treatments.
All data presented as mean ± standard deviation. *** = significant growth from induction to weaning and from weaning to termination (P< 0.0001). μ = significantly greater terminal masses in male rats receiving DMSO+FW than those receiving DMSO+PW (P< 0.05). γ = significantly greater terminal masses in female rats receiving UA+FW than those receiving DMSO+FW (P< 0.05). DMSO + PW =10 mg/kg b.w dimethylsulphoxide in neonatal phase + plain water in adulthood (n=14; 8 M, 6 F); DMSO + FW =10 mg/kg b.w dimethylsulphoxide + 20% fructose in drinking water (n=13; 7 M, 6 F); UA + PW =10 mg/kg b.w ursolic acid + plain water (n=14; 7 M, 7 F); UA + FW =10 mg/kg b.w ursolic acid + 20% fructose in drinking water (n=13; 7 M, 6 F); FR + PW =10 mg/kg b.w fructose + plain water (n=13; 6 M, 7 F); FR + FW =10 mg/kg b.w fructose + 20% fructose in drinking water (n=14; 6 M, 8 F); UAFR + PW =10 mg/kg b.w ursolic acid and fructose + plain water (n=14; 7 M, 7 F); UAFR + FW =10 mg/kg b.w ursolic acid and fructose + 20% fructose in drinking water (n=12; 6 M, 6 F).
3.1.2 Linear growth

Table 3.1 shows the masses, lengths and densities of the femora and tibiae of male and female rats in adulthood across treatments. Neither UA nor fructose affected bone growth as there were no significant differences in the masses, lengths and Seedor indices of the bones across the treatment groups (P˃ 0.05). Male rats, however, had significantly heavier masses, longer lengths and greater Seedor index values than female rats across treatment groups (P< 0.05).

Figures 3.2 and 3.3 show representative radiographic images of the femora and tibiae of the male and female rats respectively.
Table 3.1: Effect of ursolic acid on tibial and femoral masses, lengths and Seedor indices in male and female rats

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sex</th>
<th>DMSO+PW</th>
<th>DMSO+FW</th>
<th>UA+PW</th>
<th>UA+FW</th>
<th>FR + PW</th>
<th>FR + FW</th>
<th>UAFR+PW</th>
<th>UAFR+FW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tibia mass (mg)</td>
<td>Male</td>
<td>718.80±42.97</td>
<td>747.40±56.28</td>
<td>764.60±64.19</td>
<td>773.00±100.50</td>
<td>761.20±59.40</td>
<td>797.70±75.99</td>
<td>739.90±32.18</td>
<td>773.30±51.40</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>546.50±22.39</td>
<td>569.70±37.73</td>
<td>594.30±47.36</td>
<td>594.30±37.73</td>
<td>563.10±26.28</td>
<td>555.40±44.00</td>
<td>571.10±35.09</td>
<td>564.80±34.84</td>
</tr>
<tr>
<td>Tibia length (mm)</td>
<td>Male</td>
<td>43.30±0.88</td>
<td>43.61±0.54</td>
<td>39.76±0.56</td>
<td>39.76±0.56</td>
<td>43.83±0.91</td>
<td>39.71±0.49</td>
<td>39.40±0.96</td>
<td>39.77±0.59</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>39.80±0.75</td>
<td>39.28±0.73</td>
<td>39.58±0.84</td>
<td>39.58±0.84</td>
<td>44.05±1.08</td>
<td>39.40±0.96</td>
<td>39.77±0.59</td>
<td>39.27±1.26</td>
</tr>
<tr>
<td>Seedor index</td>
<td>Male</td>
<td>16.51±0.84</td>
<td>16.98±1.22</td>
<td>17.53±2.08</td>
<td>17.53±2.08</td>
<td>18.09±1.11</td>
<td>17.35±0.11</td>
<td>18.09±1.41</td>
<td>17.14±0.67</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>13.73±0.32</td>
<td>13.91±0.49</td>
<td>15.00±0.96</td>
<td>15.00±0.96</td>
<td>14.18±0.56</td>
<td>14.08±0.82</td>
<td>14.29±0.75</td>
<td>17.66±1.06</td>
</tr>
<tr>
<td>Femur mass (mg)</td>
<td>Male</td>
<td>859.30±40.55</td>
<td>903.60±94.57</td>
<td>917.30±85.64</td>
<td>936.10±69.74</td>
<td>897.80±68.39</td>
<td>943.00±69.13</td>
<td>874.70±53.64</td>
<td>917.00±57.09</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>655.30±32.31</td>
<td>649.70±39.21</td>
<td>678.30±44.86</td>
<td>678.30±44.86</td>
<td>691.70±40.74</td>
<td>663.90±55.20</td>
<td>672.70±36.70</td>
<td>673.30±48.30</td>
</tr>
<tr>
<td>Femur length (mm)</td>
<td>Male</td>
<td>38.63±0.80</td>
<td>39.3±0.81</td>
<td>39.94±0.48</td>
<td>39.45±0.64</td>
<td>38.93±0.48</td>
<td>38.77±0.68</td>
<td>38.80±0.56</td>
<td>38.80±0.56</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>34.70±0.50</td>
<td>35.32±1.12</td>
<td>34.94±0.53</td>
<td>35.17±0.72</td>
<td>34.54±0.63</td>
<td>34.94±0.64</td>
<td>35.00±1.00</td>
<td>35.00±1.00</td>
</tr>
<tr>
<td>Seedor index</td>
<td>Male</td>
<td>22.24±0.84</td>
<td>22.95±2.03</td>
<td>23.56±2.20</td>
<td>24.07±1.74</td>
<td>22.75±1.56</td>
<td>24.21±2.32</td>
<td>22.56±1.29</td>
<td>23.63±1.34</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>18.89±0.91</td>
<td>18.39±0.80</td>
<td>19.42±1.34</td>
<td>19.79±1.15</td>
<td>19.24±0.79</td>
<td>19.21±1.33</td>
<td>19.25±0.84</td>
<td>19.22±1.00</td>
</tr>
</tbody>
</table>

All data presented as mean ± standard deviation. β = male rats had significantly heavier, longer and denser femora and tibiae than female rats (P< 0.05). DMSO + PW =10 mg/kg b.w dimethylsulphoxide in neonatal phase + plain water in adulthood (n=14; 8 M, 6 F); DMSO + FW =10 mg/kg b.w dimethylsulphoxide + 20% fructose in drinking water (n=13; 7 M, 6 F); UA + PW =10 mg/kg b.w ursolic acid + plain water (n=14; 7 M, 7 F); UA + FW =10 mg/kg b.w ursolic acid + 20% fructose in drinking water (n=13; 7 M, 6 F); FR + PW =10 mg/kg b.w fructose + plain water (n=13; 6 M, 7 F); FR + FW =10 mg/kg b.w fructose + 20% fructose in drinking water (n=14; 6 M, 8 F); UAFR + PW =10 mg/kg b.w ursolic acid and fructose + plain water (n=14; 7 M, 7 F); UAFR + FW =10 mg/kg b.w ursolic acid and fructose + 20% fructose in drinking water (n=12; 6 M, 6 F), S.I =Seedor Index.
Figure 3.2: Representative radiograph images of femora and tibiae of male rats.

DMSO + PW =10 mg/kg b.w dimethylsulphoxide in neonatal phase + plain water in adulthood (n=8); DMSO + FW =10 mg/kg b.w dimethylsulphoxide + 20% fructose in drinking water (n=7); UA + PW =10 mg/kg b.w ursolic acid + plain water (n=7); UA + FW =10 mg/kg b.w ursolic acid + 20% fructose in drinking water (n=7); FR + PW =10 mg/kg b.w fructose + plain water (n=6); FR + FW =10 mg/kg b.w fructose + 20% fructose in drinking water (n=6); UAFR + PW =10 mg/kg b.w ursolic acid and fructose + plain water (n=7); UAFR + FW =10 mg/kg b.w ursolic acid and fructose + 20% fructose in drinking water (n=6).
Figure 3.3: Representative radiograph images of femora and tibiae of female rats.

DMSO + PW =10 mg/kg b.w dimethylsulphoxide in neonatal phase + plain water in adulthood (n= 6); DMSO + FW =10 mg/kg b.w dimethylsulphoxide + 20% fructose in drinking water (n=6); UA + PW =10 mg/kg b.w ursolic acid + plain water (n=7); UA + FW =10 mg/kg b.w ursolic acid + 20% fructose in drinking water (n=6); FR + PW =10 mg/kg b.w fructose + plain water (n=7); FR + FW =10 mg/kg b.w fructose + 20% fructose in drinking water (n=8); UAFR + PW =10 mg/kg b.w ursolic acid and fructose + plain water (n=7); UAFR + FW =10 mg/kg b.w ursolic acid and fructose + 20% fructose in drinking water (n=6).
3.2 Effect of neonatal intake of ursolic acid on the development of metabolic dysfunction

3.2.1 Circulating metabolites

Table 3.2 shows the fasting blood glucose and triglyceride concentrations of male and female rats on P35 across the treatment groups. Early administration of fructose and UA had no effects on fasting blood glucose and triglyceride concentrations on P35 as there were no significant differences across treatment groups and between the sexes (P> 0.05).
Table 3.2: Effect of ursolic acid on circulating metabolites; fasting blood glucose and triglyceride concentrations (P35)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sex</th>
<th>DMSO</th>
<th>UA</th>
<th>FR</th>
<th>UAFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose (mmol/L)</td>
<td>Male</td>
<td>3.51±0.66</td>
<td>3.63±0.50</td>
<td>3.76±0.55</td>
<td>3.45±0.50</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>3.55±0.57</td>
<td>3.59±0.33</td>
<td>3.39±0.43</td>
<td>3.58±0.43</td>
</tr>
<tr>
<td>Triglycerides (mmol/L)</td>
<td>Male</td>
<td>1.31±0.27</td>
<td>1.33±0.24</td>
<td>1.30±0.37</td>
<td>1.41±0.41</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>1.46±0.50</td>
<td>1.37±0.10</td>
<td>1.54±0.37</td>
<td>1.59±0.51</td>
</tr>
</tbody>
</table>

DMSO + PW = 10 mg/kg b.w dimethylsulphoxide in neonatal phase + plain water in adulthood (n=14; 8 M, 6 F); DMSO + FW = 10 mg/kg b.w dimethylsulphoxide + 20% fructose in drinking water (n=13; 7 M, 6 F); UA + PW = 10 mg/kg b.w ursolic acid + plain water (n=14; 7 M, 7 F); UA + FW = 10 mg/kg b.w ursolic acid + 20% fructose in drinking water (n=13; 7 M, 6 F); FR + PW = 10 mg/kg b.w fructose + plain water (n=13; 6 M, 7 F); FR + FW = 10 mg/kg b.w fructose + 20% fructose in drinking water (n=14; 6 M, 8 F); UAFR + PW = 10 mg/kg b.w ursolic acid and fructose + plain water (n=14; 7 M, 7 F); UAFR + FW = 10 mg/kg b.w ursolic acid and fructose + 20% fructose in drinking water (n=12; 6 M, 6 F).
Table 3.3 shows concentrations of circulating metabolites (triglycerides and cholesterol) in serum at the end of the study. In male rats, a late fructose hit (administration of DMSO neonatally phase and fructose consumption in adulthood; DMSO+FW) resulted in greater triglyceride concentrations than in rats receiving DMSO neonatally and plain water in adulthood (DMSO+ PW) (P< 0.05). No differences were observed in rats receiving an early fructose hit (fructose neonatally and water in adulthood; FR+FW) as well as a double fructose hit (fructose neonatally and in adulthood; FR+FW) (P> 0.05). In female rats, no significant differences were observed across the treatment groups in triglyceride concentration (P> 0.05). Neonatal administration of UA and fructose alone and in combination did not have any effects on concentrations of circulating triglycerides (P> 0.05). No significant differences were observed in triglyceride concentration between the sexes (P> 0.05).

Neither UA administration neonatally nor fructose administration neonatally and/or in adulthood had any effects on cholesterol concentration in male and female rats (P> 0.05). Generally, female rats had higher cholesterol concentrations than their corresponding males (P< 0.05).
Table 3.3: Effect of ursolic acid on circulating metabolites in male and female rats in adulthood

| Parameter | Sex | DMSO + PW | DMSO + FW | UA + PW | UA + FW | FR + PW | FR + FW | UA + PW | UA + FW | FR + PW | FR + FW | UA + PW | UA + FW | FR + PW | FR + FW |
|-----------------|-------|-----------|-----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Triglycerides | Male | 1.33±0.15 | 2.06±0.52 | 1.26±0.15 | 1.99±0.63 | 1.41±0.20 | 2.14±0.40 | 1.39±0.17 | 1.91±0.60 |
| | Female| 1.39±0.24 | 1.65±0.43 | 1.40±0.46 | 2.03±0.61 | 1.56±0.50 | 2.19±0.96 | 1.40±0.16 | 2.04±0.65 |
| Cholesterol | Male | 1.70± 0.16 | 1.50± 0.35 | 1.50± 0.21 | 1.70±0.27 | 1.70± 0.19 | 1.80± 0.34 | 1.45± 0.24 | 1.83± 0.27 |
| | Female| 1.85± 0.25 | 2.09 ± 0.27 | 1.96± 1.18 | 2.03±0.33 | 1.94± 0.28 | 1.99± 0.26 | 1.94± 0.44 | 2.13± 0.33 |

All data presented as mean ± standard deviation. μ = significantly increased triglyceride concentration in rats receiving DMSO+FW compared to the rats DMSO+PW (P< 0.05). β = females have significantly higher cholesterol concentrations than males (P< 0.05). DMSO + PW =10 mg/kg b.w dimethylsulphoxide in neonatal phase + plain water in adulthood (n=14; 8 M, 6 F); DMSO + FW =10 mg/kg b.w dimethylsulphoxide + 20% fructose in drinking water (n=13; 7 M, 6 F); UA + PW =10 mg/kg b.w ursolic acid + plain water (n=14; 7 M, 7 F); UA + FW =10 mg/kg b.w ursolic acid + 20% fructose in drinking water (n=13; 7 M, 6 F); FR + PW =10 mg/kg b.w fructose + plain water (n=13; 6 M, 7 F); FR + FW =10 mg/kg b.w fructose + 20% fructose in drinking water (n=14; 6 M, 8 F); UAFR + PW =10 mg/kg b.w ursolic acid and fructose + plain water (n=14; 7 M, 7 F); UAFR + FW =10 mg/kg b.w ursolic acid and fructose + 20% fructose in drinking water (n=12; 6 M, 6 F).
3.2.2 Tolerance to an oral glucose load in adulthood

Figures 3.4 shows the glucose handling profiles of the male (A) and female (B) rats at 0, 15, 30, 60, 120 and 180 minutes post-gavage with 50% glucose (2 g/kg b.w) after 8 weeks of fructose consumption. There were no significant differences in basal fasting glucose concentrations across the treatment groups (mean values; 3.8 and 4.0 mmol/L in both sexes) (P> 0.05). Sixty minutes post-gavage, all the male rats across the treatments had reached peak glucose concentrations between 5.3 and 6.3 mmol/L with no significant differences across the groups (P> 0.05). In females, with the exception of the group receiving ursolic acid in the neonatal phase and fructose in the third phase (UA+FW), there were no significant differences in peak blood glucose concentrations (6.0 and 7.4 mmol/L) which were achieved 30 minutes post-gavage (P> 0.05). Females that received ursolic acid as neonates and fructose in adulthood (UA+FW) had significantly higher blood glucose concentrations at 15 minutes post-gavage compared to their controls that received DMSO neonatally and fructose in adulthood (P< 0.05). In both sexes, 180 minutes post-gavage, blood glucose concentrations returned to normal (3.8-4.4 mmol/L). In males; main time effects (P< 0.0001), treatment (P= 0.67) and interaction (P= 0.21). In females; main time effects (P< 0.0001), treatment (P= 0.018) and interaction (P= 0.16). Fructose consumption, therefore, did not have any adverse effects on glucose handling in both sexes (P> 0.05).

Figure 3.5 shows the area under the curve of the glucose tolerance tests in male (A) and female (B) rats across the treatments. The area under the curve (concentration versus time) was calculated by the trapezoidal rule to obtain a summary of glucose tolerance. No significant differences were observed in the area under the curve in both sexes (P> 0.05).
Figure 3.4: Effect of ursolic acid on glucose tolerance in male (A) and female (B) rats.
All data presented as mean ± standard deviation. μ = significant differences in blood glucose concentrations between UA + FW and DMSO+FW (P< 0.05). DMSO + PW =10 mg/kg b.w dimethylsulphoxide in neonatal phase + plain water in adulthood (n=13; 8 M, 5 F); DMSO + FW =10 mg/kg b.w dimethylsulphoxide + 20% fructose in drinking water (n=13; 7 M, 6 F); UA + PW =10 mg/kg b.w ursolic acid + plain water (n=14; 7 M, 7 F); UA + FW =10 mg/kg b.w ursolic acid + 20% fructose in drinking water (n=12; 7 M, 5 F); FR + PW =10 mg/kg b.w fructose + plain water (n=13; 6 M, 7 F); FR + FW =10 mg/kg b.w fructose + 20% fructose in drinking water (n=14; 6 M, 8 F); UAFR + PW =10 mg/kg b.w ursolic acid and fructose + plain water (n=14; 7 M, 7 F); UAFR + FW =10 mg/kg b.w ursolic acid and fructose + 20% fructose in drinking water (n=11; 6 M, 5 F).
Figure 3.5: Effect of ursolic acid on the total area under the curve of oral glucose tolerance test in male (A) and female (B) rats.

DMSO + PW = 10 mg/kg b.w dimethylsulphoxide in neonatal phase + plain water in adulthood (n=13; 8 M, 5 F); DMSO + FW = 10 mg/kg b.w dimethylsulphoxide + 20% fructose in drinking water (n=13; 7 M, 6 F); UA + PW = 10 mg/kg b.w ursolic acid + plain water (n=14; 7 M, 7 F); UA + FW = 10 mg/kg b.w ursolic acid + 20% fructose in drinking water (n=12; 7 M, 5 F); FR + PW = 10 mg/kg b.w fructose + plain water (n=13; 6 M, 7 F); FR + FW = 10 mg/kg b.w fructose + 20% fructose in drinking water (n=14; 6 M, 8 F);
UAFR + PW =10 mg/kg b.w ursolic acid and fructose + plain water (n=14; 7 M, 7 F);
UAFR + FW =10 mg/kg b.w ursolic acid and fructose + 20% fructose in drinking water (n=11; 6 M, 5 F).
3.2.3 Food and fluid intake in adulthood

Table 3.4 shows the food intake of adult male and female rats. In both male and female rats, a late fructose hit resulted in reduced food intake in rats receiving DMSO neonatally and fructose in adulthood (DMSO+FW) compared to rats that received DMSO neonatally and plain water in adulthood (DMSO+PW) (males; main effects of time (P< 0.0001), treatment (P< 0.0001), and their interaction (P= 0.019), females; main effects of time (P< 0.0001), treatment (P< 0.0001), and their interaction (P= 0.74). An early fructose hit and a double fructose hit did not have any effects on food intake in both sexes (P> 0.05). Neonatal UA administration had no effect on food intake (P> 0.05). No significant differences in food intake were observed between the sexes (P> 0.05).

Table 3.5 shows the fluid intake of adult male and female rats respectively. In females, a late fructose hit resulted in increased fluid intake as rats receiving DMSO neonatally and fructose in adulthood (DMSO+FW) consumed significantly increased fluid than those receiving DMSO neonatally and plain water in adulthood (DMSO+PW) during weeks 4 and 7 (P< 0.05). Fructose consumption both neonatally and in adulthood had no effect on fluid consumption in male rats (males; main effects of time (P< 0.0001), treatment (P= 0.0024) and their interaction (P= 0.83), females; main effects of time (P= 0.2978), treatment (P= 0.014), and their interaction (P= 0.61). Neonatal fructose administration had no effect on fluid intake. Female rats had significantly higher fluid intake than their male counterparts (P< 0.05).
Table 3.4: Food intake in male and female rats in adulthood

<table>
<thead>
<tr>
<th>Week</th>
<th>Sex</th>
<th>Food intake (g/100 g of body mass)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>DMSO+PW</td>
</tr>
<tr>
<td>1</td>
<td>Male</td>
<td>9.15±0.40</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>10.01±0.99</td>
</tr>
<tr>
<td>2</td>
<td>Male</td>
<td>8.23±0.53</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>8.71±1.17</td>
</tr>
<tr>
<td>3</td>
<td>Male</td>
<td>8.04±0.52</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>8.35±1.18</td>
</tr>
<tr>
<td>4</td>
<td>Male</td>
<td>7.68±0.79</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>7.71±1.13</td>
</tr>
<tr>
<td>5</td>
<td>Male</td>
<td>7.26±0.49</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>8.02±0.96</td>
</tr>
<tr>
<td>6</td>
<td>Male</td>
<td>7.36±0.66</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>7.44±0.58</td>
</tr>
<tr>
<td>7</td>
<td>Male</td>
<td>6.97±0.68</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>8.25±2.61</td>
</tr>
<tr>
<td>8</td>
<td>Male</td>
<td>6.83±0.77</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>8.12±2.12</td>
</tr>
</tbody>
</table>
All data presented as mean ± standard deviation. \(\mu \) = significant decreases in food intake in rats receiving DMSO+FW compared to rats receiving DMSO+PW (P< 0.05). DMSO + PW = 10 mg/kg b.w dimethylsulphoxide in neonatal phase + plain water in adulthood (n=14; 8 M, 6 F); DMSO + FW = 10 mg/kg b.w dimethylsulphoxide + 20% fructose in drinking water (n=13; 7 M, 6 F); UA + PW = 10 mg/kg b.w ursolic acid + plain water (n=14; 7 M, 7 F); UA + FW = 10 mg/kg b.w ursolic acid + 20% fructose in drinking water (n=13; 7 M, 6 F); FR + PW = 10 mg/kg b.w fructose + plain water (n=13; 6 M, 7 F); FR + FW = 10 mg/kg b.w fructose + 20% fructose in drinking water (n=14; 6 M, 8 F); UAFR + PW = 10 mg/kg b.w ursolic acid and fructose + plain water (n=14; 7 M, 7 F); UAFR + FW = 10 mg/kg b.w ursolic acid and fructose + 20% fructose in drinking water (n=12; 6 M, 6 F).
Table 3.5: Fluid intake in male and female rats in adulthood

<table>
<thead>
<tr>
<th>Week</th>
<th>Sex</th>
<th>Fluid intake (ml /100 g of body mass)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>DMSO+PW</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>15.30±1.93</td>
</tr>
<tr>
<td>3</td>
<td>Male</td>
<td>13.36±2.52</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>13.61±2.66</td>
</tr>
<tr>
<td>4</td>
<td>Male</td>
<td>13.87±2.62</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>15.74±3.34</td>
</tr>
<tr>
<td>5</td>
<td>Male</td>
<td>13.53±3.16</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>14.97±1.47</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>15.89±3.37</td>
</tr>
<tr>
<td>7</td>
<td>Male</td>
<td>13.29±3.50</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>14.97±3.55</td>
</tr>
<tr>
<td>8</td>
<td>Male</td>
<td>12.84±2.67</td>
</tr>
</tbody>
</table>
All data presented as mean ± standard deviation. μ = significant increases in fluid intake in rats receiving DMSO+FW compared to rats receiving DMSO+PW (P< 0.05). β = females consumed significantly more fluid than males (P< 0.05). DMSO + PW =10 mg/kg b.w dimethylsulphoxide in neonatal phase + plain water in adulthood (n=14; 8 M, 6 F); DMSO + FW =10 mg/kg b.w dimethylsulphoxide + 20% fructose in drinking water (n=13; 7 M, 6 F); UA + PW =10 mg/kg b.w ursolic acid + plain water (n=14; 7 M, 7 F); UA + FW =10 mg/kg b.w ursolic acid + 20% fructose in drinking water (n=13; 7 M, 6 F); FR + PW =10 mg/kg b.w fructose + plain water (n=13; 6 M, 7 F); FR + FW =10 mg/kg b.w fructose + 20% fructose in drinking water (n=14; 6 M, 8 F); UAFR + PW =10 mg/kg b.w ursolic acid and fructose + plain water (n=14; 7 M, 7 F); UAFR + FW =10 mg/kg b.w ursolic acid and fructose + 20% fructose in drinking water (n=12; 6 M, 6 F).
3.2.4 Adiposity

Table 3.6 shows the masses of visceral and epididymal fat pads. In both male and female rats, no significant differences were observed in visceral fat pad mass across the treatment groups (P> 0.05). Although the males rats showed a tendency to an increased visceral and epididymal fat mass following intake of fructose as adults, the differences were not statistically significant across the treatment groups (P> 0.05). No significant differences were observed in visceral fat pad mass between the sexes except for females receiving fructose both neonatally and in adulthood (FR+FW) that had greater visceral fat pad masses compared to their male counterparts (P< 0.05).
Table 3.6: Effect of ursolic acid on adiposity

<table>
<thead>
<tr>
<th>Fat pad</th>
<th>Sex</th>
<th>DMSO + PW</th>
<th>DMSO + FW</th>
<th>UA + PW</th>
<th>UA + FW</th>
<th>FR + PW</th>
<th>FR + FW</th>
<th>UAFR + PW</th>
<th>UAFR + FW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Female</td>
<td>10.92±3.60</td>
<td>17.66±4.09</td>
<td>11.21±4.48</td>
<td>18.52±7.01</td>
<td>10.64±2.42</td>
<td>18.98±3.81</td>
<td>12.30±5.20</td>
<td>19.51±5.40</td>
</tr>
<tr>
<td>Visceral (rTL)</td>
<td>Male</td>
<td>0.26±0.08</td>
<td>0.39±0.11</td>
<td>0.26±0.06</td>
<td>0.49±0.14</td>
<td>0.30±0.07</td>
<td>0.55±0.10</td>
<td>0.25±0.09</td>
<td>0.49±0.14</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>0.27±0.09</td>
<td>0.45±0.11</td>
<td>0.28±0.11</td>
<td>0.47±0.17</td>
<td>0.27±0.06</td>
<td>0.48±0.09</td>
<td>0.30±0.13</td>
<td>0.50±0.14</td>
</tr>
<tr>
<td>Epididymal (g)</td>
<td>Male</td>
<td>4.41±1.56</td>
<td>5.64±1.48</td>
<td>4.17±1.18</td>
<td>7.28±2.29</td>
<td>4.25±0.82</td>
<td>7.71±1.94</td>
<td>4.72±0.73</td>
<td>6.97±1.89</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>0.10±0.04</td>
<td>0.13±0.03</td>
<td>0.10±0.03</td>
<td>0.16±0.05</td>
<td>0.10±0.02</td>
<td>0.18±0.05</td>
<td>0.11±0.02</td>
<td>0.16±0.04</td>
</tr>
</tbody>
</table>

All data presented as mean ± standard deviation. β = significant differences in fat pad masses between male rats and female rats (P< 0.05). DMSO + PW =10 mg/kg b.w dimethylsulphoxide in neonatal phase + plain water in adulthood (n=14; 8 M, 6 F); DMSO + FW =10 mg/kg b.w dimethylsulphoxide + 20% fructose in drinking water (n=13; 7 M, 6 F); UA + PW =10 mg/kg b.w ursolic acid + plain water (n=14; 7 M, 7 F); UA + FW =10 mg/kg b.w ursolic acid + 20% fructose in drinking water (n=13; 7 M, 6 F); FR + PW =10 mg/kg b.w fructose + plain water (n=13; 6 M, 7 F); FR + FW =10 mg/kg b.w fructose + 20% fructose in drinking water (n=14; 6 M, 8 F); UAFR + PW =10 mg/kg b.w ursolic acid and fructose + plain water (n=14; 7 M, 7 F); UAFR + FW =10 mg/kg b.w ursolic acid and fructose + 20% fructose in drinking water (n=12; 6 M, 6 F), rTL = relative to tibial length.
3.2.5 Hepatic storage of lipids

Figure 3.6 shows the terminal hepatic lipid content in male (A) and female (B) rats. In males, fructose administration in adulthood did not have adverse effects on hepatic lipid accumulation (P > 0.05). Neonatal administration of UA in combination with fructose with subsequent fructose consumption in adulthood (UAFR+FW) resulted in lower hepatic lipid content compared to the groups receiving DMSO neonatally and fructose or plain water in adulthood (DMSO+FW and DMSO+PW) (P < 0.05).

In female rats, a single fructose hit in adulthood resulted in a significant increase in hepatic lipid accumulation but not in the neonatal phase (P < 0.0001). However, a double hit of fructose (consumption both neonatally and in adulthood) resulted in even greater accumulation of hepatic lipids compared to the single hit in adulthood (P < 0.0001). Neonatal UA administration alone and in combination with fructose with subsequent fructose feeding in adulthood (UA+FW and UAFR+FW) significantly prevented the accumulation of lipids as a result of a single late hit of fructose (P < 0.05) and a double hit of fructose (P < 0.0001). A comparison of the sexes revealed that the fructose effect was quite pronounced in females as they had significantly increased hepatic lipid accumulation than male rats (P < 0.05).
Figure 3.6: Hepatic lipid content in male (A) and female (B) rats in adulthood

All data presented as mean ± standard deviation. \(\kappa = \) significantly increased hepatic lipids in female rats receiving \(\text{FR} + \text{FW} \) compared to those receiving \(\text{DMSO} + \text{FW} \) (\(P < 0.0001 \)). \(\mu = \) significantly lower hepatic lipid content in rats receiving \(\text{FR} + \text{FW} \) (males; \(P < 0.05 \)), \(\text{UA} + \text{FW} \) (females; \(P < 0.05 \)) and \(\text{UAFR} + \text{FW} \) (males; \(P < 0.0001 \), females; \(P < 0.001 \)) compared to rats receiving \(\text{DMSO} + \text{FW} \). \(\gamma = \) significantly increased hepatic lipids in animals receiving \(\text{DMSO} + \text{FW} \) compared to those receiving \(\text{DMSO} + \text{PW} \) (\(P < 0.05 \)). \(\omega = \)
significantly lower hepatic lipid content in rats receiving UAFR+FW than in DMSO+PW (P<0.05). DMSO + PW =10 mg/kg b.w dimethylsulphoxide in neonatal phase + plain water in adulthood (n=14; 8 M, 6 F); DMSO + FW =10 mg/kg b.w dimethylsulphoxide + 20% fructose in drinking water (n=13; 7 M, 6 F); UA + PW =10 mg/kg b.w ursolic acid + plain water (n=14; 7 M, 7 F); UA + FW =10 mg/kg b.w ursolic acid + 20% fructose in drinking water (n=13; 7 M, 6 F); FR + PW =10 mg/kg b.w fructose + plain water (n=13; 6 M, 7 F); FR + FW =10 mg/kg b.w fructose + 20% fructose in drinking water (n=14; 6 M, 8 F); UAFR + PW =10 mg/kg b.w ursolic acid and fructose + plain water (n=14; 7 M, 7 F); UAFR + FW =10 mg/kg b.w ursolic acid and fructose + 20% fructose in drinking water (n=12; 6 M, 6 F).
3.3 Effect of neonatal intake of ursolic acid on the morphometry of the gastrointestinal tract and accessory organs

3.3.1 Gastrointestinal tract (GIT) organs

Table 3.7 shows the effect of fructose on the GIT organs in male and female Sprague Dawley rats across all treatment groups. Fructose and UA in the neonatal and adult phases had no adverse effects in the organ masses and lengths in male and female rats across the treatment groups (P > 0.05). Generally, male rats had significantly heavier and longer absolute organ masses and lengths than their corresponding females (P < 0.05). The females, however, had significantly heavier and longer organ masses and lengths respectively relative tibial length (P < 0.05).
Table 3.7: Effect of ursolic acid on the masses and lengths of GIT organs

<table>
<thead>
<tr>
<th>Organ</th>
<th>Sex</th>
<th>DMSO + PW</th>
<th>DMSO + FW</th>
<th>UA + PW</th>
<th>UA + FW</th>
<th>FR + PW</th>
<th>FR + FW</th>
<th>UAFR + PW</th>
<th>UAFR + FW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stomach</td>
<td>Male</td>
<td>2.06±0.13</td>
<td>2.14±0.22</td>
<td>2.11±0.10</td>
<td>2.35±0.26</td>
<td>2.17±0.15</td>
<td>2.38±0.17</td>
<td>2.10±0.14</td>
<td>2.23±0.15</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>1.50±0.07</td>
<td>1.57±0.24</td>
<td>1.58±0.13</td>
<td>1.64±0.15</td>
<td>1.59±0.10</td>
<td>1.62±0.16</td>
<td>1.59±0.13</td>
<td>1.59±0.13</td>
</tr>
<tr>
<td>Stomach</td>
<td>Male</td>
<td>0.05±0.00</td>
<td>0.05±0.01</td>
<td>0.05±0.00</td>
<td>0.05±0.01</td>
<td>0.05±0.00</td>
<td>0.05±0.00</td>
<td>0.05±0.00</td>
<td>0.05±0.00</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>0.04±0.00</td>
<td>0.04±0.00</td>
<td>0.04±0.00</td>
<td>0.04±0.00</td>
<td>0.04±0.00</td>
<td>0.04±0.00</td>
<td>0.04±0.00</td>
<td>0.04±0.00</td>
</tr>
<tr>
<td>SI</td>
<td>Male</td>
<td>8.35±0.62</td>
<td>8.89±1.10</td>
<td>8.08±0.61</td>
<td>9.44±1.04</td>
<td>8.85±1.11</td>
<td>9.54±0.87</td>
<td>8.14±0.89</td>
<td>9.20±0.76</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>6.08±0.40</td>
<td>6.39±1.11</td>
<td>6.44±0.56</td>
<td>6.55±0.84</td>
<td>6.21±0.46</td>
<td>6.39±0.43</td>
<td>6.50±0.92</td>
<td>6.74±0.86</td>
</tr>
<tr>
<td>SI</td>
<td>Male</td>
<td>0.19±0.02</td>
<td>0.20±0.03</td>
<td>0.19±0.01</td>
<td>0.21±0.02</td>
<td>0.20±0.02</td>
<td>0.22±0.02</td>
<td>0.19±0.02</td>
<td>0.21±0.02</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>0.15±0.01</td>
<td>0.16±0.02</td>
<td>0.16±0.01</td>
<td>0.17±0.02</td>
<td>0.16±0.01</td>
<td>0.16±0.02</td>
<td>0.17±0.02</td>
<td>0.17±0.02</td>
</tr>
<tr>
<td>SI</td>
<td>Male</td>
<td>1434±59.51</td>
<td>1439±93.53</td>
<td>1427±56.48</td>
<td>1470±129.60</td>
<td>1502±80.35</td>
<td>1452±103.20</td>
<td>1413±64.73</td>
<td>1548±107.20</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>1270±108.30</td>
<td>1200±76.16</td>
<td>1258±69.69</td>
<td>1258±65.01</td>
<td>1311±104.30</td>
<td>1248±36.15</td>
<td>1284±61.76</td>
<td>1284±47.90</td>
</tr>
<tr>
<td>LI</td>
<td>Male</td>
<td>2.22±0.22</td>
<td>1.96±0.23</td>
<td>2.31±0.25</td>
<td>1.88±0.24</td>
<td>2.20±0.25</td>
<td>2.07±0.37</td>
<td>2.00±0.24</td>
<td>2.10±0.25</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>1.66±0.09</td>
<td>1.46±0.21</td>
<td>1.72±0.23</td>
<td>1.64±0.27</td>
<td>1.73±0.33</td>
<td>1.53±0.21</td>
<td>1.79±0.32</td>
<td>1.59±0.26</td>
</tr>
<tr>
<td>LI</td>
<td>Male</td>
<td>0.05±0.01</td>
<td>0.04±0.01</td>
<td>0.05±0.01</td>
<td>0.04±0.01</td>
<td>0.05±0.00</td>
<td>0.05±0.01</td>
<td>0.05±0.01</td>
<td>0.05±0.01</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>0.15±0.01</td>
<td>0.16±0.02</td>
<td>0.16±0.01</td>
<td>0.17±0.02</td>
<td>0.16±0.01</td>
<td>0.16±0.02</td>
<td>0.17±0.02</td>
<td>0.17±0.02</td>
</tr>
<tr>
<td>LI</td>
<td>Male</td>
<td>260.00±28.28</td>
<td>248.60±13.45</td>
<td>265.70±11.34</td>
<td>245.70±28.78</td>
<td>260.80±19.60</td>
<td>250.80±30.40</td>
<td>247.90±4.06</td>
<td>259.20±20.10</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>217.50±4.18</td>
<td>215.00±13.78</td>
<td>235.00±9.57</td>
<td>222.50±15.41</td>
<td>234.30±24.40</td>
<td>207.50±15.81</td>
<td>230.70±20.50</td>
<td>216.70±13.66</td>
</tr>
<tr>
<td>Caecum</td>
<td>Male</td>
<td>1.52±0.16</td>
<td>1.15±0.53</td>
<td>1.46±0.18</td>
<td>1.18±0.22</td>
<td>1.56±0.16</td>
<td>1.23±0.25</td>
<td>1.51±0.21</td>
<td>1.10±0.18</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>0.98±0.13</td>
<td>0.84±0.14</td>
<td>1.17±0.23</td>
<td>0.89±0.10</td>
<td>1.11±0.12</td>
<td>0.83±0.10</td>
<td>1.11±0.16</td>
<td>0.93±0.18</td>
</tr>
<tr>
<td>Caecum (rTL)</td>
<td>Male</td>
<td>0.04±0.00</td>
<td>0.03±0.01</td>
<td>0.03±0.00</td>
<td>0.03±0.00</td>
<td>0.04±0.00</td>
<td>0.03±0.01</td>
<td>0.03±0.00</td>
<td>0.03±0.00</td>
</tr>
<tr>
<td>--------------</td>
<td>----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>Female</td>
<td>0.02±0.00</td>
<td>0.02±0.00</td>
<td>0.03±0.00</td>
<td>0.02±0.00</td>
<td>0.03±0.00</td>
<td>0.02±0.00</td>
<td>0.03±0.00</td>
<td>0.02±0.00</td>
<td></td>
</tr>
</tbody>
</table>

All data presented as mean ± standard deviation. β = significant differences in organ masses and lengths between male rats and female rats (P < 0.05). DMSO + PW =10 mg/kg b.w dimethylsulphoxide in neonatal phase + plain water in adulthood (n=14; 8 M, 6 F); DMSO + FW =10 mg/kg b.w dimethylsulphoxide + 20% fructose in drinking water (n=13; 7 M, 6 F); UA + PW =10 mg/kg b.w ursolic acid + plain water (n=14; 7 M, 7 F); UA + FW =10 mg/kg b.w ursolic acid + 20% fructose in drinking water (n=13; 7 M, 6 F); FR + PW =10 mg/kg b.w fructose + plain water (n=13; 6 M, 7 F); FR + FW =10 mg/kg b.w fructose + 20% fructose in drinking water (n=14; 6 M, 8 F); UAFR + PW =10 mg/kg b.w ursolic acid and fructose + plain water (n=14; 7 M, 7 F); UAFR + FW =10 mg/kg b.w ursolic acid and fructose + 20% fructose in drinking water (n=12; 6 M, 6 F), rTL = relative to tibial length, SI = small intestines, LI = large intestines.
3.3.2 Accessory organs

Table 3.8 shows the effect of neonatal administration of UA on GIT accessory organs at the end of the study. Neither neonatal UA administration nor fructose consumption neonatally and in adulthood had any effects on the masses of accessory organs across the treatment groups in both sexes (P > 0.05). Males had significantly heavier organ masses than females across the treatments (P < 0.05).
Table 3.8: Effect of ursolic acid on masses of GIT accessory organs

<table>
<thead>
<tr>
<th>Organ</th>
<th>Sex</th>
<th></th>
<th>DMSO + PW</th>
<th>DMSO+ FW</th>
<th>UA + PW</th>
<th>UA + FW</th>
<th>FR + PW</th>
<th>FR + FW</th>
<th>UAFR + PW</th>
<th>UAFR + FW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liver (g)</td>
<td>Male</td>
<td>12.18±</td>
<td>12.31±</td>
<td>11.93±</td>
<td>13.67±</td>
<td>12.53±</td>
<td>14.15±</td>
<td>11.40±</td>
<td>14.08±</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>6.84±</td>
<td>7.54±</td>
<td>7.31±</td>
<td>7.79±</td>
<td>7.26±</td>
<td>7.53±</td>
<td>7.49±</td>
<td>8.10±</td>
<td></td>
</tr>
<tr>
<td>Liver (rTL)</td>
<td>Male</td>
<td>0.28±</td>
<td>0.30±</td>
<td>0.27±</td>
<td>0.31±</td>
<td>0.29±</td>
<td>0.32±</td>
<td>0.26±</td>
<td>0.32±</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>0.17±</td>
<td>0.19±</td>
<td>0.18±</td>
<td>0.20±</td>
<td>0.18±</td>
<td>0.19±</td>
<td>0.19±</td>
<td>0.21±</td>
<td></td>
</tr>
<tr>
<td>Pancreas (g)</td>
<td>Male</td>
<td>1.54±</td>
<td>1.68±</td>
<td>1.51±</td>
<td>1.76±</td>
<td>1.84±</td>
<td>1.81±</td>
<td>1.64±</td>
<td>1.47±</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>1.11±</td>
<td>1.22±</td>
<td>1.26±</td>
<td>1.28±</td>
<td>1.24±</td>
<td>1.21±</td>
<td>1.18±</td>
<td>1.25±</td>
<td></td>
</tr>
<tr>
<td>Pancreas (rTL)</td>
<td>Male</td>
<td>0.04±</td>
<td>0.04±</td>
<td>0.03±</td>
<td>0.04±</td>
<td>0.04±</td>
<td>0.04±</td>
<td>0.04±</td>
<td>0.03±</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>0.03±</td>
<td>0.03±</td>
<td>0.03±</td>
<td>0.03±</td>
<td>0.03±</td>
<td>0.03±</td>
<td>0.03±</td>
<td>0.03±</td>
<td></td>
</tr>
<tr>
<td>Kidney (g)</td>
<td>Male</td>
<td>2.76±</td>
<td>2.80±</td>
<td>2.69±</td>
<td>2.87±</td>
<td>2.79±</td>
<td>2.86±</td>
<td>2.69±</td>
<td>2.89±</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>1.62±</td>
<td>1.85±</td>
<td>1.71±</td>
<td>1.71±</td>
<td>1.66±</td>
<td>1.70±</td>
<td>1.77±</td>
<td>1.74±</td>
<td></td>
</tr>
<tr>
<td>Kidney (rTL)</td>
<td>Male</td>
<td>0.06±</td>
<td>0.06±</td>
<td>0.06±</td>
<td>0.07±</td>
<td>0.06±</td>
<td>0.06±</td>
<td>0.06±</td>
<td>0.07±</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>0.04±</td>
<td>0.05±</td>
<td>0.04±</td>
<td>0.04±</td>
<td>0.04±</td>
<td>0.04±</td>
<td>0.04±</td>
<td>0.04±</td>
<td></td>
</tr>
<tr>
<td>Heart (g)</td>
<td>Male</td>
<td>1.47±</td>
<td>1.59±</td>
<td>1.49±</td>
<td>1.60±</td>
<td>1.45±</td>
<td>1.65±</td>
<td>1.44±</td>
<td>1.53±</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>0.99±</td>
<td>0.97±</td>
<td>1.00±</td>
<td>1.04±</td>
<td>1.02±</td>
<td>1.07±</td>
<td>1.04±</td>
<td>1.08±</td>
<td></td>
</tr>
<tr>
<td>Heart (rTL)</td>
<td>Male</td>
<td>0.03±</td>
<td>0.04±</td>
<td>0.03±</td>
<td>0.04±</td>
<td>0.03±</td>
<td>0.04±</td>
<td>0.03±</td>
<td>0.03±</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>0.02±</td>
<td>0.02±</td>
<td>0.03±</td>
<td>0.03±</td>
<td>0.03±</td>
<td>0.03±</td>
<td>0.03±</td>
<td>0.03±</td>
<td></td>
</tr>
</tbody>
</table>
β = significant differences in organ masses between male rats and female rats ($P < 0.05$). DMSO + PW =10 mg/kg b.w dimethylsulphoxide in neonatal phase + plain water in adulthood (n=14; 8 M, 6 F); DMSO + FW =10 mg/kg b.w dimethylsulphoxide + 20% fructose in drinking water (n=13; 7 M, 6 F); UA + PW =10 mg/kg b.w ursolic acid + plain water (n=14; 7 M, 7 F); UA + FW =10 mg/kg b.w ursolic acid + 20% fructose in drinking water (n=13; 7 M, 6 F); FR + PW =10 mg/kg b.w fructose + plain water (n=13; 6 M, 7 F); FR + FW =10 mg/kg b.w fructose + 20% fructose in drinking water (n=14; 6 M, 8 F); UA + PW =10 mg/kg b.w ursolic acid and fructose + plain water (n=14; 7 M, 7 F); UA + FW =10 mg/kg b.w ursolic acid and fructose + 20% fructose in drinking water (n=12; 6 M, 6 F).
3.4 Effect of neonatal intake of ursolic acid on the general health profile

3.4.1 Surrogate markers of liver function

Table 3.9 shows the effect of UA on surrogate markers of liver function; alanine aminotransferase (ALT), alkaline phosphatase (ALP), albumin (ALB) and total bilirubin (TBIL). There were no significant differences across the treatments in both sexes (P > 0.05). Generally, female rats had significantly lower concentrations of ALP compared to their corresponding males (P < 0.05).
Table 3.9: Effect of ursolic acid on surrogate markers of liver function

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sex</th>
<th>DMSO + PW</th>
<th>DMSO + FW</th>
<th>UA + PW</th>
<th>UA + FW</th>
<th>FR + PW</th>
<th>FR + FW</th>
<th>UAFR + PW</th>
<th>UAFR + FW</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALT (U/L)</td>
<td>Male</td>
<td>93.50±46.02</td>
<td>91.57±31.36</td>
<td>131.10±89.08</td>
<td>100.00±58.59</td>
<td>74.00±22.47</td>
<td>77.00±49.85</td>
<td>82.71±12.63</td>
<td>119.20±84.3</td>
</tr>
<tr>
<td>ALP (U/L)</td>
<td>Male</td>
<td>132.10±29.85</td>
<td>116.70±34.7</td>
<td>129.00±29.91</td>
<td>105.00±27.18</td>
<td>113.30±41.7</td>
<td>108.30±26.8</td>
<td>127.60±40.2</td>
<td>110.00±8.60</td>
</tr>
<tr>
<td>ALB (g/dL)</td>
<td>Male</td>
<td>28.00±2.00</td>
<td>30.14±2.85</td>
<td>29.57±2.37</td>
<td>32.00±3.16</td>
<td>29.17±3.76</td>
<td>31.33±2.88</td>
<td>28.43±2.44</td>
<td>30.33±2.34</td>
</tr>
<tr>
<td>TBIL(g/dL)</td>
<td>Male</td>
<td>3.20±1.10</td>
<td>3.57±0.98</td>
<td>4.50±3.70</td>
<td>5.75±4.27</td>
<td>24.33±37.82</td>
<td>4.80±3.03</td>
<td>nd</td>
<td>5.83±2.71</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>6.00±4.55</td>
<td>6.75±3.86</td>
<td>4.40±2.41</td>
<td>4.40±1.95</td>
<td>6.80±3.63</td>
<td>4.60±3.21</td>
<td>5.50±2.52</td>
<td>6.20±3.56</td>
</tr>
</tbody>
</table>

All data presented as mean ± standard deviation. β = significantly higher ALP concentrations in female rats than in male rats (P < 0.05). DMSO + PW =10 mg/kg b.w dimethylsulphoxide in neonatal phase + plain water in adulthood (n=14; 8 M, 6 F); DMSO + FW =10 mg/kg b.w dimethylsulphoxide + 20% fructose in drinking water (n=13; 7 M, 6 F); UA + PW =10 mg/kg b.w ursolic acid + plain water (n=14; 7 M, 7 F); UA + FW =10 mg/kg b.w ursolic acid + 20% fructose in drinking water (n=13; 7 M, 6 F); FR + PW =10 mg/kg b.w fructose + plain water (n=13; 6 M, 7 F); FR + FW =10 mg/kg b.w fructose + 20% fructose in drinking water (n=14; 6 M, 8 F); UAFR + PW =10 mg/kg b.w ursolic acid and fructose + plain water (n=14; 7 M, 7 F); UAFR + FW =10 mg/kg b.w ursolic acid and fructose + 20% fructose in drinking water (n=12; 6 M, 6 F).
3.4.2 Surrogate markers of renal function in adulthood

Table 3.10 shows the effect of UA on surrogate markers of renal function: creatinine and blood urea nitrogen (BUN). In both male and female rats, a late fructose hit in adulthood resulted in significantly lower BUN in rats receiving DMSO neonatally and fructose in adulthood (DMSO+FW) compared to rats receiving DMSO neonatally and plain water in adulthood (DMSO+PW) (P< 0.05). No significant differences were observed in creatinine concentrations across the treatment groups in both sexes (P> 0.05). Female rats generally had significantly lower BUN and creatinine concentrations than their corresponding males (P< 0.05).
Table 3.10: Effect of ursolic acid on surrogate markers for renal function in male and female rats

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sex</th>
<th>DMSO + PW</th>
<th>DMSO + FW</th>
<th>UA + PW</th>
<th>UA + FW</th>
<th>FR + PW</th>
<th>FR + FW</th>
<th>UAFR + PW</th>
<th>UAFR + FW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creatinine (µmol/l)</td>
<td>Male</td>
<td>47.38±8.25</td>
<td>53.00±7.35</td>
<td>47.86±7.08</td>
<td>47.86±4.81</td>
<td>44.17±9.50</td>
<td>51.50±6.78</td>
<td>44.00±5.20</td>
<td>44.00±5.69</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>44.00±5.69</td>
<td>47.00±4.65</td>
<td>38.86±4.8β</td>
<td>47.00±7.35</td>
<td>44.00±5.20</td>
<td>46.25±6.36</td>
<td>40.14±7.08</td>
<td>45.50±6.78</td>
</tr>
<tr>
<td>BUN (mmol/l)</td>
<td>Male</td>
<td>7.65±1.33</td>
<td>5.19±1.12β</td>
<td>7.34±1.03</td>
<td>5.57±0.85</td>
<td>7.57±0.98</td>
<td>4.75±0.39</td>
<td>6.94±1.13</td>
<td>5.40±0.94</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>6.55±1.48</td>
<td>4.17±0.86β</td>
<td>5.81±0.97β</td>
<td>4.88±0.72</td>
<td>6.23±1.09β</td>
<td>4.75±0.89</td>
<td>6.07±0.95</td>
<td>4.58±0.83</td>
</tr>
</tbody>
</table>

All data presented as mean ± standard deviation. μ = significantly lower BUN concentrations in rats receiving DMSO+FW than in the rats receiving DMSO+PW (P< 0.05). β = significantly lower creatinine and BUN concentrations in females rats compared to male rats (P < 0.05).

DMSO + PW =10 mg/kg b.w dimethylsulphoxide in neonatal phase + plain water in adulthood (n=14; 8 M, 6 F); DMSO + FW =10 mg/kg b.w dimethylsulphoxide + 20% fructose in drinking water (n=13; 7 M, 6 F); UA + PW =10 mg/kg b.w ursolic acid + plain water (n=14; 7 M, 7 F); UA + FW =10 mg/kg b.w ursolic acid + 20% fructose in drinking water (n=13; 7 M, 6 F); FR + PW =10 mg/kg b.w fructose + plain water (n=13; 6 M, 7 F); FR + FW =10 mg/kg b.w fructose + 20% fructose in drinking water (n=14; 6 M, 8 F); UAFR + PW =10 mg/kg b.w ursolic acid and fructose + plain water (n=14; 7 M, 7 F); UAFR + FW =10 mg/kg b.w ursolic acid and fructose + 20% fructose in drinking water (n=12; 6 M, 6 F).
3.4.3 Clinical biochemistry

Table 3.11 shows the serum concentrations of total protein (TP), calcium, globulin, phosphate and amylase. Ursolic acid administration and fructose consumption neonatally and in adulthood had no significant effects across the treatments in both sexes (P > 0.05). The females generally had significantly lower amylase and phosphate concentrations than their corresponding males (P < 0.05). There were no significant differences between males and females in TP, calcium and globulin concentrations (P > 0.05).
Table 3.11: Effect of ursolic acid on general health markers in male and female rats

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sex</th>
<th>DMSO + PW</th>
<th>DMSO + FW</th>
<th>UA + PW</th>
<th>UA + FW</th>
<th>FR + PW</th>
<th>FR + FW</th>
<th>UAFR + PW</th>
<th>UAFR + FW</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP (g/L)</td>
<td>Male</td>
<td>57.25±3.50</td>
<td>59.29±4.19</td>
<td>55.86±5.31</td>
<td>60.86±4.78</td>
<td>61.00±8.88</td>
<td>63.83±7.81</td>
<td>49.29±5.82</td>
<td>62.17±4.07</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>58.50±5.47</td>
<td>61.17±2.23</td>
<td>55.43±8.08</td>
<td>59.83±3.43</td>
<td>57.14±5.46</td>
<td>58.88±4.79</td>
<td>55.14±8.36</td>
<td>59.33±4.13</td>
</tr>
<tr>
<td>Calcium (mmol/L)</td>
<td>Male</td>
<td>2.57±0.17</td>
<td>2.59±0.18</td>
<td>2.54±0.09</td>
<td>2.69±0.14</td>
<td>2.52±0.09</td>
<td>2.86±0.26</td>
<td>2.51±0.19</td>
<td>2.69±0.21</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>2.58±0.32</td>
<td>2.63±0.06</td>
<td>2.52±0.20</td>
<td>2.63±0.11</td>
<td>2.59±0.16</td>
<td>2.60±0.11</td>
<td>2.52±0.23</td>
<td>2.74±0.19</td>
</tr>
<tr>
<td>Globulin (g/L)</td>
<td>Male</td>
<td>28.88±4.36</td>
<td>29.14±5.87</td>
<td>26.14±6.15</td>
<td>29.14±5.64</td>
<td>31.67±7.69</td>
<td>32.17±8.80</td>
<td>20.86±4.63</td>
<td>32.00±4.60</td>
</tr>
<tr>
<td>Phosphate (mmol/L)</td>
<td>Male</td>
<td>2.05±0.11</td>
<td>2.16±0.23</td>
<td>2.20±0.30</td>
<td>2.04±0.26</td>
<td>2.15±0.23</td>
<td>2.08±0.18</td>
<td>1.92±0.18</td>
<td>2.12±0.18</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>1.77±0.30</td>
<td>1.93±0.24</td>
<td>1.79±0.18</td>
<td>1.89±0.26</td>
<td>1.83±0.15</td>
<td>1.70±0.23</td>
<td>1.74±0.20</td>
<td>1.81±0.12</td>
</tr>
<tr>
<td>Amylase (U/L)</td>
<td>Male</td>
<td>1497±214.3</td>
<td>1770±271.7</td>
<td>1563±373.1</td>
<td>1964±224.7</td>
<td>1458±165.3</td>
<td>2020±299.2</td>
<td>1590±182.6</td>
<td>1900±248.5</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>891.5±230.4</td>
<td>1526±361.1</td>
<td>859.7±190.2</td>
<td>1186±229.8</td>
<td>900.1±120.9</td>
<td>1446±446.3</td>
<td>959.6±272</td>
<td>1597±174.6</td>
</tr>
</tbody>
</table>

All data presented as mean ± standard deviation. β = significantly lower amylase and phosphate concentrations in female rats compared to male rats (P < 0.05). DMSO + PW =10 mg/kg b.w dimethylsulphoxide in neonatal phase + plain water in adulthood (n=14; 8 M, 6 F); DMSO + FW =10 mg/kg b.w dimethylsulphoxide + 20% fructose in drinking water (n=13; 7 M, 6 F); UA + PW =10 mg/kg b.w ursolic acid + plain water (n=14; 7 M, 7 F); UA + FW =10 mg/kg b.w ursolic acid + 20% fructose in drinking water (n=13; 7 M, 6 F); FR + PW =10 mg/kg b.w fructose + plain water (n=13; 6 M, 7 F); FR + FW =10 mg/kg b.w fructose + 20% fructose in drinking water (n=13; 7 M, 6 F); UAFR + PW =10 mg/kg b.w ursolic acid and fructose + plain water (n=14; 7 M, 7 F); UAFR + FW =10 mg/kg b.w ursolic acid and fructose + 20% fructose in drinking water (n=12; 6 M, 6 F).
To our knowledge, this is the first study to investigate the effects of neonatal administration of UA on the susceptibility of adult rats to diet-induced metabolic dysfunction. The effects of fructose were shown to be dependent on the time of intervention. An early fructose hit (fructose administered in the neonatal phase) without a secondary fructose hit later in life did not seem to have any discernible effects on metabolic dysfunction. A late fructose hit (fructose consumption in adulthood) resulted in differences in body mass, triglyceride concentration and food and fluid intake. Administration of fructose neonatally with the subsequent consumption of fructose in adulthood (double fructose hit) increased hepatic lipid accumulation. Fructose consumption neonatally and/or in adulthood did not affect linear growth, adiposity, glucose handling, organ morphometry and general health markers. Ursolic acid administration was shown to be hepatoprotective as it prevented hepatic lipid accumulation. Sex differences in response to the interventions were also observed.

4.1 Growth performance

4.1.1 Body mass

In the present study, a late fructose hit in adulthood resulted in increases in body mass although an early fructose hit did not have any effects in males. In females, fructose consumption both neonatally and in adulthood did not have any effects on body mass (Figure 3.1). Mamikutty et al. (2014) (20% fructose in drinking water for 8 weeks in male Wistar rats) and Barros et al. (2007) (10% and 20% fructose in drinking water for 2 months in hamsters) also found fructose consumption in adulthood to promote increases in body mass. The increases observed may have been due to fructose altering satiety signalling pathways and triggering minimal changes in blood glucose concentration thereby promoting overconsumption (Teff et al., 2004, Allen et al., 2005, Scarpace and Zhang, 2009, Rizkalla, 2010).

Administration of UA (alone) to neonates resulted in increases in body mass in female rats in the present study (Figure 3.1). In studies where UA has been used to ameliorate the effects of calorie-dense diets, it has been found to lower body mass. Rao et al. (2011) found UA (10 mg/kg b.w) to lower the body mass of 6 week old Swiss mice fed a high fat diet for 15 weeks. Li et al. (2014) and Sundaresan et al. (2012) also found UA to reduce body mass in mice consuming high fat diets. The effects of UA (alone) administered in the
neonatal phase with subsequent fructose consumption in adulthood in increasing body mass observed in this study warrant further investigation.

In the present study, fructose consumption resulted in higher body mass gains in male rats compared to their female counterparts. This could have been due to the anabolic effects of testosterone (Gibney et al., 2003). Body mass is used as an indicator of growth, however, it is affected acutely by factors such as hydration and postprandial status (MacCracken and Stebbings, 2012, Mahan et al., 2012, Stookey, 2016). To minimize the potential effects of gut fill on body mass, in the present study the rats were fasted overnight so as to facilitate emptying of particulate matter from the GIT. To investigate the long-term growth, hormone-regulated growth indicators such as linear growth were also used to assess growth.

4.1.2 Linear growth

Indicators of bone growth are increases in length, width and mass which all respond to growth hormone in a dose-dependent manner (Albright and Reifenstein Jr, 1949, Venken et al., 2008, Orwoll et al., 2009). Consequently, bone length (particularly tibial length) is often used as an indicator of growth (Panchal et al., 2013, Mamikutty et al., 2014). In this study, consumption of 20% fructose had no adverse effects on femur and tibia length, mass and Seedox indices across treatments in both sexes. This is in line with reports that fructose consumption does not directly cause adverse effects on bone growth (Tsanzi et al., 2008).

As the consumption of 20% fructose had no adverse effects on bone, neonatal administration of ursolic acid had no effects on bone growth later in life. Ursolic acid administration in adulthood, however, has been reported to have protective effects on bone in vivo; in streptozocin-induced diabetic 6-week old rats, UA ameliorated the deleterious bone effects of diabetes by suppressing osteoclast differentiation (Yu et al., 2015). In vitro, Lee et al. (2008) and Tan et al. (2015) also found UA to stimulate osteoblast differentiation and suppress osteoclast genesis in mouse cells using cell culture techniques.

Male rats had larger masses, lengths and Seedox indices of femora and tibiae compared to their corresponding females (Table 3.1). This may have been due to the fact that in humans and rodents, males naturally have larger cortical bone sizes than females (Seeman, 1998, Orwoll et al., 2009). In humans, the larger bones are due to the process of periosteal apposition which is inhibited in females after epiphyseal fusion at the onset of puberty.
(Orwoll et al., 2009). Epiphyseal closure does not occur in female rodents, however, the secretion of testosterone in males at puberty contributes to enhanced bone growth by inducing osteoblast proliferation (Kung, 2003, Vanderschueren et al., 2004).

4.2 The development of metabolic dysfunction

4.2.1 Circulating metabolites

Neonatal administration of fructose and UA did not have any effects on fasting blood glucose and triglyceride concentrations (P35 assays) in the early stages of this study following the ‘first hit’ (Table 3.2). Most studies only assay for these metabolites after the second intervention as early programming effects may be observed after a latent period (which can last up to years) or after a second intervention (Rhind et al., 2001, Barouki et al., 2012, Heindel et al., 2015). Thus, this could explain why in the current study, the “first hit” did not manifest in overtly discernible changes two weeks after stopping the intervention. In the absence of a second intervention, subtle changes may be impossible to detect without employing molecular techniques (Heindel et al., 2015). Unfortunately I did not do any molecular studies on the rats and this may be the subject for future studies.

In our study, the “second hit” in adulthood did not affect the circulating concentrations of triglycerides in both sexes. However, a single late fructose hit in adulthood resulted in increased triglyceride concentrations in male rats (Table 3.3). Baena et al. (2015) showed that consumption of 10% fructose for 8 weeks in female weanling rats increased the concentration of circulating triglycerides. This suggests that the age of rats and timing of fructose consumption are critical when assessing triglyceride concentration in female rats. Fructose feeding did not have any adverse effects on total cholesterol concentration in this study in both males and females although Mamikutty et al. (2014) observed increases in cholesterol concentrations using a similar model in male Wistar rats. Stanhope et al. (2011) also found similar results using fructose and high fructose corn syrup in humans. The increases in cholesterol were attributed to fructose-induced elevation of low density lipoprotein (LDL) (Seneff et al., 2011). Due to technical limitations, I was unable to assay the types of cholesterol i.e. LDL and HDL.

Neonatal UA administration (alone or in combination with fructose) did not have apparent effects in triglyceride concentrations in both sexes. In adult mice, UA treatment for 8 weeks at 50 mg/kg and 200 mg/kg was found to reduce triglyceride concentrations in a
dose-dependent manner after consumption of high fat diets (Li et al., 2014, Jia et al., 2015). Using a model that induces increases in triglyceride concentration, the dosages used to lower triglyceride concentration may need to be investigated further. Administration of UA neonatally (alone and in combination with fructose) did not have any effects on cholesterol concentration. In male Sprague Dawley rats, UA (50 mg/kg) was found to have no effect on cholesterol concentrations when used alone but had synergistic cholesterol lowering effects with artesunate after 4 weeks of supplementation (Yuliang et al., 2015). In rabbits, UA (25 mg/kg) had cholesterol lowering effects both alone and in combination with artesunate after 8 weeks of feeding (Wang et al., 2013). Therefore, the effect of UA on cholesterol seems to be species, time and dose dependent.

Although no differences were noted between the sexes in triglyceride concentration, female rats had higher concentrations of cholesterol than male rats (Table 3.3). Generally, oestrogen increases HDL-cholesterol while decreasing triglycerides and may explain the sex-differences observed in cholesterol concentrations in the present study although HDL was not assayed for (Fowler, 2006, Kumar et al., 2010). Studies by Korićanac et al. (2013) also suggest that the effects of fructose-induced metabolic perturbations may depend on timing and duration of fructose consumption in female rats.

4.2.2 Tolerance to an oral glucose load

Prolonged fructose consumption is generally associated with impaired glucose handling in rodents. Impaired glucose handling can be measured using an oral glucose tolerance test and is characterised by elevated basal fasting glucose concentrations and insufficient or no insulin effects therefore delaying glucose uptake and prolonging the hyperglycaemic state following a glucose load (American Diabetes Association, 2013, Nussey and Whitehead, 2013). Fructose consumption for 8 weeks had no adverse effects on glucose handling in both male and female rats (Figure 3.4). The basal fasting glucose concentrations of rats on a fructose diet in adulthood were comparable with those drinking plain water (Figure 3.4). Similarly, the time taken to reach peak glucose concentrations and the time taken to return to normal glucose concentrations following an oral glucose load was not significantly different. Impaired glucose tolerance has been shown in 3-week old rats consuming 20% fructose in drinking water for 6 weeks and 25% fructose for an additional 6-weeks (Dupas et al., 2015). Differences in age of rats, genetic predisposition and the duration of fructose
consumption and well as the type of fructose consumed may account for the differences in glucose handling (Barbosa et al., 2007, de Moura et al., 2009).

Ursolic acid has been shown to improve tolerance in high caloric diet induced glucose intolerance. Jayaprakasam et al. (2006) and Jia et al. (2015) showed that UA administration (500 mg/kg b.w and 50/200 mg/kg b.w respectively) for 8 weeks in mice fed a high fat diet improved glucose handling. In vitro studies (Jung et al., 2007) using Chinese hamster ovary cells expressing human insulin receptor and in vivo studies using hyperglycaemic rats have shown UA to have insulomimetic, insulin sensitising and secretagogue properties (Castro et al., 2015) which may explain UA’s direct hypoglycaemic effects. As fructose did not alter glucose tolerance, the potential protective role of UA against altered glucose handing was not apparent and may need to be further investigated.

4.2.3 Food and fluid intake

Food and fluid intake are affected by the satiety hormones insulin, ghrelin and leptin amongst others (Woods et al., 2006, Ahima et al., 2016). Fructose does not stimulate insulin and leptin secretion (Rodin, 1991, Lindqvist et al., 2008) and it inhibits ghrelin secretion affecting satiety control (Castro et al., 2011). Being highly palatable, fructose consumption facilitates central nervous system alterations in the reward system which encourages overfeeding (Spring et al., 2008, Davis et al., 2010). In the present study, a single fructose hit in adulthood resulted in decreased food intake (both sexes) and increased fluid intake (female rats). However, no effects were noted in rats that received a double fructose hit in comparison to those that received a single late hit in both sexes (Tables 3.4 and 3.5). These results may account for the change observed in body mass changes between groups of rats of the same sex which received either a late fructose hit or a double fructose hit (section 4.1.1). Neonatal administration of fructose with subsequent fructose consumption in adulthood did not predispose the rats to consume more fluid than the corresponding controls receiving water. Neonatal UA acid administration, alone and in combination with fructose did not have any effects on food and fluid intake although triterpenoids have been found to suppress sweet taste thereby causing a reduction in food and fluid intake (Nazaruk and Borzym-Kluczyk, 2014).

Interestingly, female rats consumed more fructose in adulthood than their male counterparts (Table 3.3). Studies by Curtis et al. (2005) in Sprague Dawley rats suggest that female rats have a higher preference for sweet solutions than males possibly due to the
effects of oestrogen which increases the threshold for responding to sweet solutions. A study by Ackroff and Sclafani (2004) revealed that males are more sensitive to sweet taste than females following fructose consumption in rats. These two factors may have contributed to the higher fluid consumption in females compared to males.

4.2.4 Adiposity

Rats consuming fructose (both sexes) showed increased adiposity, however, the differences were not significant in rats receiving a late fructose hit as well as a double fructose hit although Mamikutty et al. (2014) observed increases in visceral fat pad depositions using a similar experimental model in male Wistar rats. Genetic differences between the two strains of rats may have played a role in the differences observed as Van Liefde et al. (1993) demonstrated that there are differences in β-adrenoceptor subtypes between Sprague Dawley and Wistar rats which affect lipolysis.

As fructose intake did not have any adverse effects on adiposity, the neonatal intake of ursolic acid did not seem to have any effects on visceral and epididymal fat deposition in the present study. No significant differences were observed between the sexes although fructose-induced adiposity is thought to be sex-specific (Korićanac et al., 2013). It is notable though there are conflicting reports on the role of oestrogen, age of rats and duration of fructose consumption in promoting adiposity which may need to be investigated further (Korićanac et al., 2013, Guerra et al., 2014).

4.2.5 Hepatic storage of lipids

The liver is a homeostatic organ largely responsible for carbohydrate, fat and protein metabolism, bile secretion and detoxification (Singh, 2008, Preston and Wilson, 2012). It plays a central role in fructose metabolism as the bulk of ingested fructose is metabolised there (Agarwal and Agarwal, 2007, Chatterjea and Shinde, 2012). In the present study, fructose intake in adulthood promoted hepatic lipid accumulation in female rats but not in males (Figure 3.6). This fructose effect was even more pronounced in animals that received fructose neonatally and in adulthood (first and second fructose hits) lending credence to the “two hit” hypothesis (section 1.2). As described in section 1.3.3.1, fructose is found in minimal concentrations in circulation due to its rapid uptake on first pass in the liver. As the bulk of fructose metabolism occurs in the liver, it is vulnerable to the deleterious effects of fructose as was shown the present study. Findings from the study
suggest that fructose consumption in adulthood has more pronounced effects than consumption in the neonatal phase. However, consumption of fructose neonatally and in adulthood (double hit) resulted in even greater lipid accumulation which suggests that although no differences were observed in the neonatal phase, the first fructose hit is instrumental in hepatic lipid accumulation and thus the effects of timing of fructose consumption on hepatic lipid accumulation may need further investigation. Baena et al. (2015) showed that 10% fructose consumption for 8 weeks in female rats led to increased hepatic lipid accumulation through decreased autophagy. Inhibition of autophagy in the liver increases lipid accumulation in hepatocytes (Singh et al., 2009, Amir and Czaja, 2011) which may have contributed to the enhanced hepatic lipid accumulation observed in this study. Additionally, the de novo lipogenesis described in section 1.3.3.1 also promotes storage of lipids in the liver. These effects of fructose may lead to the development and progression of steatosis to NAFLD (Zelber-Sagi et al., 2007, Ouyang et al., 2008, Abdelmalek et al., 2010, Sánchez-Lozada et al., 2010). In both children and adults, NAFLD is a major global health concern which has been implicated as being a precursor and mediator of the metabolic syndrome (Gutteridge, 1997, Ekeleme et al., 2005, Allabi et al., 2011).

A major and exciting finding from this study was that neonatal intake of UA in combination with fructose with subsequent fructose consumption in adulthood resulted in decreased hepatic lipid accumulation in both sexes in our study. This is may be because UA is a peroxisome proliferator-activated receptor alpha (PPARα) agonist (similar to the commercially available lipid lowering agent fenofibrate) and induces hepatic autophagy (lipophagy) making it instrumental in hepatic lipid metabolism (Mandard et al., 2004, Jia et al., 2011). The PPARα regulates genes responsible for fatty acid transport, utilisation and hepatic, mitochondrial and peroxisomal β fatty acid oxidation (Aoyama et al., 1998, Reddy and Rao, 2006, Souza-Mello, 2015). By inducing hepatic autophagy, UA has been shown to facilitate the breakdown of lipid droplets resulting in a reduction in lipid concentrations (Singh et al., 2009, Jia et al., 2015).

In the present study, female rats had enhanced hepatic lipid accumulation compared to their male counterparts. Vilà et al. (2011) showed that female rats were more prone to fructose-induced metabolic alterations including fatty livers after consuming 10% fructose for two-weeks due to altered leptin regulation. Due to technical challenges, leptin was not assayed for in the present study. The effects of androgens and oestrogens on liver
metabolism are age, species and strain specific and could have also contributed to the differences observed in the present study although further investigations are needed (Korićanac et al., 2013, Shen and Shi, 2015).

4.3 Morphometry of the GIT and accessory organs

4.3.1 Gastrointestinal tract organs

As the GIT is responsible for the digestion and absorption of nutrients, a dysfunctional GIT may be the starting point for many chronic diseases which may adversely affect the quality of life (Parkman et al., 2010, Guinane and Cotter, 2013). Consequently, GIT organ morphometry is used as an indicator of gut health (Luna, 1996, Haba et al., 2000). In this study, fructose consumption (in neonates and adult rats) had no effects GIT components and therefore did not adversely affect gut health. Administration of ursolic acid during the neonatal phase did not have any effects on the GIT organ macro-morphometry. Males generally had larger GIT organ masses compared to their corresponding females this may have been due to the growth promoting effects of testosterone and growth hormone described above (section 4.1).

4.3.2 Accessory organs

Organ weight is a sensitive and useful tool in assessing the effect of various chemical compounds on specific body organs (Black, 2002, Bucci, 2002, Wooley, 2003). In toxicological studies, differences in organ weights between treatment groups may indicate early effects of a compound even in the absence of morphological changes (Bailey et al., 2004, Sellers et al., 2007). Elevated heart and kidney weights are normally indicative of myocardial and tubular hypertrophy respectively (Greaves, 2011). In our study, males generally had heavier organ masses probably due the effects of testosterone as described in section 4.1.1. Fructose and UA did not adversely affect the masses of accessory organs suggesting that the general well-being of the organs was probably not affected. This was further supported by the rats’ general health profiles (section 4.4) which showed that fructose consumption did not adversely alter surrogate markers of health.
4.4 General health profile

4.4.1 Surrogate markers of liver function

A liver biopsy is the ‘gold standard’ in assessing liver injury, inflammation and fibrosis (Bravo et al., 2001, Choudhury and Sanyal, 2004, Fallatah, 2014). However, it has a number of limitations and so biomarkers such as serum concentrations of albumin, TP, ALP, AST, ALT, and TBIL are used to assess liver injury (Wallach, 2007). Serum albumin concentration reflects nutritional status, the liver’s synthetic ability, and hydration making it an indicator of hepatobiliary irregularities (Lee, 2009, Brooks et al., 2015). Total protein is an estimation of the sum of albumin and globulin (Brooks et al., 2015). Although ALP is a measure of the integrity of the hepatobiliary system, it is not specific as serum concentrations are also elevated by osteoblasts, pregnancy and childhood growth (Schoch and Whiteman, 2007, Khurana, 2009, Lee, 2009, McCarthy and Frassica, 2014). Serum concentrations of ALT are used to assess active hepatic injury and the potential hepatic toxicity of various medicines (Green and Flamm, 2002, Brooks et al., 2015). Total bilirubin includes both direct and indirect bilirubin and is an indicator of hepatocellular injury (Schoch and Whiteman, 2007, Brooks et al., 2015). Fructose consumption in adulthood did not affect the serum concentrations of the surrogate markers of liver function and therefore it probably did not cause injury in this study.

Li et al. (2014) showed that UA (0.125%, 0.25% and 0.5%) alleviated liver injury and lowered ALT and AST concentrations in rats after six weeks of high fat feeding in a dose-dependent manner. As 20% fructose intake did not have adverse effects on surrogate markers of liver function in the current study, it is difficult to draw conclusions on the potential protective role of UA on the liver when subjected to fructose-induced metabolic stress may need to be further investigated.

4.4.2 Surrogate markers of kidney function

Creatinine and urea are nitrogen containing end products of metabolism; creatinine is a result of muscle creatine catabolism while urea is a result of blood and tissue protein turnover (Hosten, 1990, Wallach, 2007). The kidneys filter almost all the endogenous creatinine from blood and it is excreted in urine (Malarkey and McMorrow, 2011). Therefore, creatinine and BUN are used to assess renal insufficiency (Traynor et al., 2006, Wallach, 2007, Lascano and Poggio, 2010). Although serum concentrations of creatinine
and BUN are useful indicators of renal function, they only become abnormal after 50% of renal function is lost (Wallach, 2007). In the present study, fructose intake had no adverse effects on plasma BUN and creatinine concentrations and thus fructose did not elicit any observable adverse effects on the kidney. At high concentrations (60%), chronic fructose ingestion has been shown to induce renal hypertrophy, glomerulosclerosis and tubulointerstitial disease (Kizhner and Werman, 2002, Nakayama et al., 2010). It has also been shown to exacerbate established kidney disease (Gersch et al., 2007). Uric acid accumulation as a result of fructose metabolism is a putative mechanism for the adverse effects in the kidneys (Sánchez-Lozada et al., 2007). This suggests that the effects of fructose on the kidney are affected by the concentration of fructose as well as the duration of fructose consumption.

In streptozocin-induced diabetic rats, UA has been shown to confer renal protection following 16 weeks of UA supplementation (Ling et al., 2013). In the present study, fructose did not seem to adversely affect the kidney thus the potential protective role of neonatal administration of UA may need to be ascertained in future studies where renal impairment is observed. The female rats had lower creatinine and BUN concentrations probably due to decreased muscle mass compared to male rats (Pagana and Pagana, 2013).

4.4.3 Clinical biochemistry

Total protein (TP) in circulation is a health marker that reflects nutritional status and is used in the diagnosis of oedema, kidney and liver disease (Singh et al., 2011, Mahan et al., 2012). Fructose consumption did not have any adverse effects of total protein in both sexes and no differences were observed between the sexes.

Calcium plays important roles in a number of physiological activities; blood clotting, nerve transmission, muscle contraction and maintenance of bone and teeth health (Fischbach and Dunning, 2009, Langley-Evans, 2015). Fructose intake in adulthood did not affect calcium concentration in the present study.

In the body, phosphorus is present as phosphate and is essential for bone mineralisation, generation of ATP, maintenance of cell structure and acid-base homeostasis (Penido and Alon, 2012). Fructose intake did not adversely affect circulating phosphate concentrations. Female rats had lower concentrations of phosphate compared to males and this may have been due to the fact that high fructose consumption causes a decrease in serum phosphate.
concentration as most of the phosphate is lost in urine (Berdanier et al., 2007). The female rats consumed more fructose-rich fluid (Table 3.4) than their male counterparts which could have contributed to the differences observed.

Amylase is a hydrolytic enzyme which is instrumental in carbohydrate metabolism is found mainly in saliva and pancreatic juice (Stoker, 2012, Patton and Thibodeau, 2014). Serum amylase concentration is an indicator of acute pancreatitis or inflammation of the salivary glands (Hensleigh and Holaway, 1988, Matull et al., 2006, Brooks et al., 2015). In the present study, fructose consumption had no adverse effects on the serum amylase concentrations. Consequently, it was not possible to further explore the effects neonatal administration of UA on fructose associated effects on blood amylase concentrations. Ursolic acid, however, has been shown, to have inhibitory effects on α-amylase activity and is currently being explored as for use as alternative therapy in diabetes management (Ali et al., 2006, Kumar et al., 2013, Nazaruk and Borzym-Kluczyk, 2014).

Globulins are serum proteins that include carrier proteins, antibodies, complement and enzymes (Bhagavan, 2002, Thrall et al., 2012). Malnutrition, congenital immune deficiency and nephrotic syndrome lower the levels of globulins (Busher, 1990, Neto et al., 2009). Fructose consumption had no effect on globulin concentration. This was further supported by the total protein concentrations which were within normal concentrations.

Thus in general, in this study, 20% fructose intake had no adverse effects on the clinical biochemistry profile. Neonatal administration of UA also had no apparent effects on the above parameters.
CHAPTER 5 : CONCLUSION AND RECOMMENDATIONS
5.1 Conclusion

With most studies investigating UA as a treatment option, this study sought to determine the potential prophylactic role of UA by targeting a critical developmental period regarding metabolic dysfunction. The first nutritional intervention was aimed at neonatal programming whilst the second was to induce metabolic dysfunction as a “second hit” and to investigate whether the early interventions with UA would have an attenuating effect. Intake of fructose both neonatally and in adulthood resulted in increased hepatic lipid accumulation which was pronounced in female rats. In males, a late fructose hit in adulthood was shown to increase body mass and circulating triglyceride concentrations. Food (both sexes) and fluid (females) intake were also altered due to a late fructose hit. The interventions were well tolerated by the rats as no adverse health effects with regards to linear growth, organ morphometry, glucose handling and surrogate health markers were observed.

In the present study, UA was shown to be hepatoprotective evidenced by the decreased lipid accumulation in the rats receiving UA (alone and in combination with fructose) neonatally in both sexes. While there has been progress in awareness programs on the potential dangers of added sugars such as fructose as well as the introduction of “sugar tax”, decreasing sugar consumption will be no easy feat. With fructose-induced metabolic problems such as obesity and NAFLD affecting a large number of the population, including children, findings from this study show that phytochemicals like UA may play a crucial role in strategic preventative nutrition.

5.2 Limitations and recommendations

For future studies, manipulations of the maternal diet in addition to the dietary interventions employed in this study are recommended. As there are a number of physiologically sensitive periods from conception to the immediate postnatal phase, maternal dietary interventions may provide broader insights regarding the effects of fructose on the parameters tested in the current study. Broader studies to assay for insulin and leptin resistance, body mass index and blood pressure may also be instrumental as these are also markers of MS. Due to some technical challenges, LDL, HDL, VLDL and leptin concentrations could not be determined but analysis is recommended for future studies.
The use of molecular techniques could aid in identifying subtle changes that may not be exhibited in the phenotype. Additionally, these techniques can also aid in establishing the mechanisms involved. Although the current study was an experimental study, no molecular techniques were employed. However, their use is recommended for future studies so as to identify any potential alterations not apparent in the phenotype. Using an identical experimental model, it is recommended that 20% fructose be administered in feed. This is because some studies suggest that fructose in feed elicits a more aggressive form of MS than in drinking water. This may help in establishing a working model for future studies.

As UA was administered orally, bioavailability assays may also be done in the future. Poor absorption, intestinal microbiota, pancreatic secretions and low solubility lower the bioavailability of ingested phytonutrients. Responses to drugs are at times dose-specific necessitating the use of bioavailability assays.

Further studies are necessary to determine the optimum dose and duration for maximal UA action against metabolic dysfunction in the neonatal phase. Although consumption of 20% fructose resulted in metabolic alterations particularly in the liver, it is recommended to continue feeding until 10-12 weeks as this may induce MS-associated alterations not observed in the present study. In this study, hepatic lipid accumulation was observed which is believed to be the precursor of metabolic syndrome therefore feeding for a longer period of time may result in the occurrence of other metabolic anomalies associated with metabolic syndrome.

The present study focused on neonatal programming in rats, therefore, caution needs to be exercised when using this data as a predictor of potential human reactions. Studies in higher order animals such as primates are recommended to account for molecular, cellular, physiologic and immunologic differences between species. As the effects of the treatments were found to be time-dependent and at times sex-specific, it is recommended to do studies involving males and females of different ages where possible.

Hepatic lipid accumulation (as observed in the present study) is believed to be the precursor of metabolic dysfunction and ultimately, metabolic syndrome. Major drivers for hepatic lipid accumulation include; de novo lipogenesis, decreased lipophagy and β-oxidation of lipids (Shils and Shike, 2006, Singh et al., 2009). As the causes of fatty liver
and MS multi-factorial, a multi-pronged approach involving a number pathways needs to be explored in future studies. Potential pathways include hepatic autophagy, fatty acid synthesis, β-oxidation of lipids and biochemical pathways that promote de novo lipogenesis such as glycolysis and the citric acid cycle.
CHAPTER 6: REFERENCES

90

INTERNATIONAL DIABETES FEDERATION, I. 2005

IDF worldwide definition of the metabolic syndrome.

epigenetic regulation of hepatic insulin-signaling pathways in the offspring. The FASEB Journal, 27(9):3786-3796.

OFFICIAL METHODS OF ANALYSIS OF ANALYTICAL CHEMISTS, A. 2005. Method number 920:39- Fat (Crude) or Ether Extract

SHUKLA, B., VISEN, P., PATNAIK, G., TRIPATHI, S., SRIMAL, R., DAYAL, R. &

sub-Saharan Africa: A review of experiences, information gaps and research needs*,
Division of Analysis, Research, and Assessment, World Health Organization.

SIMELANE, M. B., SHONHAI, A., SHODE, F. O., SMITH, P., SINGH, M. & OPOKU,

of the Nutrition Society, 70*(01):73-81.

SINCLAIR, K. D., ALLEGRIUCCI, C., SINGH, R., GARDNER, D. S., SEBASTIAN, S.,
BISPHAM, J., THURSTON, A., HUNTLEY, J. F., REES, W. D. & MALONEY,
determined by maternal periconceptional B vitamin and methionine status.

SINGER, M. (2013). Development, coinfection, and the syndemics of pregnancy in Sub-

SINGH, A., BHAT, K., TEJ & SHARMA, P., OM (2011). Clinical biochemistry of
hepatotoxicity. *Journal of Clinical Toxicology, S4*:001(doi: 10.4172/2161-0495.S4-
001).

publishers, pp190.

SINGH, R., KAUSHIK, S., WANG, Y., XIANG, Y., NOVAK, I., KOMATSU, M.,

SMITH, C. J. & RYCKMAN, K. K. (2015). Epigenetic and developmental influences on
the risk of obesity, diabetes, and metabolic syndrome. *Diabetes, Metabolic
syndrome and Obesity: Targets and Therapy, 8*:295.

SOLTANI, Z., RASHEED, K., KAPUSTA, D. R. & REISIN, E. (2013). Potential role of
uric acid in metabolic syndrome, hypertension, kidney injury, and cardiovascular

SWISS CONFEDERATION (2011). Fünf Methoden der Komplementärmedizin werden unter bestimmten Bedingungen während sechs Jahren provisorisch vergütet (Five CAM methods eligible for reimbursement under specific conditions for a provisional period of six years). Bundesamt für Gesundheit (press release), Swiss Confederation.

alterations in DNA methylation and gene expression in pancreatic islets of rats.

APPENDIX 1: Ethics clearance certificate

Department of the Witwatersrand
Johannesburg

STRICTLY CONFIDENTIAL
ANIMAL ETHICS SCREENING COMMITTEE (AESC)
CLEARANCE CERTIFICATE NO. 2014/49/D

APPLICANT: Ms N Mukanowennou
SCHOOL: Physiology
LOCATION: Faculty of Health Sciences
PROJECT TITLE: The effects of unsolicoid on neonatal programming and its potential to prevent the development of metabolic dysfunction in Sprague Dawley rats

Number and Species
142 Sprague Dawley rats

Approval was given for the use of animals for the project described above at an AESC meeting held on 26 August 2014. This approval remains valid until 25 August 2016.

The use of these animals is subject to AESC guidelines for the use and care of animals, is limited to the procedures described in the application form and is subject to any additional conditions listed below:

None.

Signed:
(Chairperson AESC)
Date: 12/9/2014

I am satisfied that the persons listed in this application are competent to perform the procedures therein, in terms of Section 23 (1) (c) of the Veterinary and Para-Veterinary Professions Act (19 of 1982).

Signed:
(Registered Veterinarian)
Date: 15 September 2014

cc: Supervisor: Prof K Erkewanger & Dr E Chivandu
Director: CAS

Works 2005/07/001/EESCert.wps

123