WIReDSpace
Welcome WIReDSpace(to Wits Institutional Repository on DSpace)
For queries relating to content and technical issues, please contact IR specialists via this email address : openscholarship.library@wits.ac.za, Tel: 011 717 4652 or 011 717 1954

Communities in WIReDSpace
Select a community to browse its collections.
- This community is for all faculties and schools' research outputs and publications by Wits academics and researchers.
- This community hosts traditional outputs such as published and unpublished research articles, conference papers, book chapters and other research outputs authored by Wits academics and researchers. Items in this collection are also mapped to relevant collections within the Faculties/Schools/Departments communities for more specific browsing and searching.
- This Community hosts a collection of electronic theses and dissertations (ETDs) submitted by doctoral and masters' students of Wits University.
- This community is for all faculties and schools' theses and dissertations by masters and doctoral students.
Recent Submissions
A geographical analysis of the impacts of construction and demolition waste on wetland functionality in South Africa: a study of Gauteng province
(University of the Witwatersrand, Johannesburg, 2024-09) Mangoro, Ngonidzashe; Kubanza, Nzalalemba Serge; Mulala, Danny Simatele
The purpose of this study was to investigate construction and demolition waste management processes in sub-Saharan Africa and how they affect wetland ecosystems, using South Africa as a case study. Construction and demolition (CDW) waste has become a massive urban environmental challenge on a global scale, but more so in developing countries found in sub-Saharan Africa. In the context of South Africa, construction and demolition waste is not a waste stream taken seriously by local and national authorities because it is ‘general waste that does not pose an immediate threat to the environment. This position is premised on the idea that construction and demolition waste is generally inert (chemically inactive) and therefore cannot cause an immediate environmental risk. In this study, it is argued that the environmental risk of waste goes beyond the embedded chemical constituencies because some waste streams can cause immediate environmental risk through their physical properties depending on the location of disposal. It is further argued that although CDW is generally inert, disposal in wetlands immediately disrupts the way wetland ecosystem’s function, causing several environmental risks. To mitigate the environmental threats posed by construction and demolition waste, this study proposes a change in the methodological approaches and strategies deployed to manage the waste stream, such as by introducing a hybrid of circular economy and industrial ecology to minimize or eliminate waste production. This study involved several data collection and analysis methods. Using a combination of qualitative and quantitative studies methods, data was collected with the goal to understand the perceptions of experts on how construction and demolition waste management in South Africa affects wetland ecosystems and what can be done to effectively manage the waste stream in the context of a developing country. Data informing this study were collected through semi-structured interviews and surveys in the province of Gauteng, specifically in the City of Johannesburg and City of Ekurhuleni Municipalities, where there is massive illegal dumping in wetlands for various reasons. Furthermore, apart from the use of semi-structured interviews and surveys, a digital elevation model was generated in ArcGIS Pro 10.1 software to measure the effects of construction and demolition waste on wetlands in the study area. The approach to this study using both qualitative and quantitative methods was crucial because it provided human perceptions which were accurately corroborated by GIS software. The study found that construction and demolition waste management in South Africa is affected by several challenges that lead to massive illegal dumping in critical ecological ecosystems such as wetlands. In a broad sense, the major challenge to sustainable construction and demolition waste management in South Africa is institutional failure at both the local and national levels. Local authorities such as municipalities are characterized by massive corruption, poor funding, and lack of strategic technologies among other things, while at the national level, there is massive interference with municipal affairs through bureaucratic delays in the disbursement of municipal funds. A combination of these and other factors leads to illegal dumping of construction and demolition waste across the Gauteng Province, particularly in wetlands in low-income areas. The data informing this study reveals that dumping construction and demolition waste in wetlands causes an immediate threat to the existence of wetlands through massive sedimentation with insoluble materials. It is ultimately found that construction and demolition waste destroy the ability of wetlands to offer ecosystem services such as flood attenuation, carbon sequestration, water filtration, and habitat provision, among other functions, leading to environmental events such as flooding. A combination of circular economy and industrial ecology can be one of the ways that can be deployed to effectively and sustainably manage construction and demolition waste in South Africa. The circular economy and its three principles of ‘reduce’, ‘recycle’, and ‘reuse’ has been successfully deployed in developed countries in the European Union, where recycling has topped 70% of the total construction waste generated. Industrial ecology with its analogy of industrial ecoparks has been deployed in the European Union with immense success, until more attention was directed to circular economy. With an increase in municipal funding and introduction of a construction waste information system, a combination of ‘circular economy’ and ‘industrial ecology’ can significantly help to reduce pressure on wetlands and the environment at large. Even though the methodological improvements suggested above could significantly reduce pressure on wetlands, the implementation could be faced with institutional challenges. Therefore, it is argued that urgent institutional transformation is required to make tangible changes in the field of construction and demolition waste management. It is recommended that there should be increased law enforcement to curb widespread illegal dumping in South Africa’s major cities. It is also recommended that, like in Europe, South Africa must introduce tailor-made legislation of policies for construction and demolition waste alone. Promulgation of dedicated legislation provides clear direction on how the waste stream is managed and who is responsible for specific roles. Furthermore, dedicated legislation can be a crucial tool to deliver sustainable construction and demolition waste management in South Africa because it can be used to encourage the use of recycled aggregates and limit the amount of illegal dumping or extraction of materials from the environment. Finally, dedicated construction and demolition waste legislation can be used to shift from the traditional view of pollution or contamination through toxicity, and so the value of this study is immediately apparent.
Behavioural and physiological responses of sable antelope to heat and aridity
(University of the Witwatersrand, Johannesburg, 2024-10) Haylock, Kiara Avelyen; Hetem, Robyn; Parrini, Francesca
The increased probability of longer, more extreme dry seasons, due to rapidly rising temperatures and the increased frequency and intensity of droughts, threatens water-dependent, selective grazers throughout Africa. Phenotypic plasticity such as behavioural adjustments and physiological flexibility may buffer the impacts of spatiotemporal variations in resource availability and climate. My project aimed to assess variations in home range size, movement distances, behavioural states of movement, fine-scale activity, microclimate selection and body temperature of sable antelope (Hippotragus niger niger), a water-dependent selective grazer, in relation to spatiotemporal variation in vegetation greenness and environmental heat load. To address the aim of my project, I measured body temperature and fine-scale activity using biologging in ten free-living GPS-collared sable antelopes in the semi-arid Bwabwata National Park of Namibia. Each collar was fitted with a miniature black globe thermometer to assess microclimate selection. A weather station with a standard black globe thermometer recorded black globe temperature and air temperature. Data collection spanned 24 months, from May 2016 to April 2018. The dry season was a critical period for sable antelopes, particularly the late dry season when high ambient temperatures compounded reduced resource availability. As conditions became hotter and browner with the progression of the dry season, home ranges elongated towards the Kavango River and increased in size by ~50% from the early dry to the late dry season. In response to increased 24-hour mean black globe temperature and increased exposure to brown vegetation, the 24-hour mean hourly displacement distance of sable antelopes increased with progression of the dry season, mostly due to the increased frequency of long, directed movements to the Kavango River during the late dry season. One sable antelope travelled between 13 and 30 kms every 4-5 days to access water from the river during the late dry season. Using Hidden Markov Models, four behavioural states were identified from the movement tracks of sable antelopes: resting, foraging, local movement and relocating. The long, directed movements to water, classified as a relocating behavioural state, predominated during the late dry season. Sable antelope displayed an increase in relocating behaviour and a decrease in foraging behaviour associated with high 24-hour mean black globe temperature and increased proportion of brown vegetation exposure. Sable antelopes also displayed an increase in local movement with increased exposure to brown vegetation and high 24-hour mean black globe temperature, but a decrease in resting behaviour with an increase in the proportion of brown vegetation exposure. Driven by decreasing vegetation greenness and increasing black globe temperatures, sable antelopes reduced their diurnal proportion of activity with progression of the dry season, associated with a reduction in activity during the heat of the day in response to increased exposure to brown vegetation, high 24-hour mean black globe temperature and an increased proportion of time spent in the shade. Sable antelopes did not fully compensate for lost diurnal activity, despite increased nocturnal activity during hot and dry conditions, as total 24-hour activity decreased with progression of the dry season. Sable antelopes also selected higher quality microclimates (i.e. microclimates that were on average 6.7 ± 0.2 oC cooler than direct sun) when increasingly exposed to brown vegetation and high 24-hour maximum black globe temperature. Fluctuations in 24-hour body temperature increased during the dry season with maximum amplitudes of body temperature rhythm of >5 oC within a single day during the late dry season. Sable antelopes displayed a reduction in minimum 24-hour body temperature in response to decreased 24-hour black globe temperature and increased exposure to brown vegetation during the early dry season, likely due to energy deprivation. While minimum body temperatures remained low during the late dry season, sable antelopes displayed an increase in maximum 24-hour body temperature in response to increased mean 24-hour black globe temperature and increased exposure to brown vegetation, likely due to water deprivation. High maximum 24-hour body temperatures, indicative of dehydration-induced hyperthermia, increased the likelihood of relocating movements to the Kavango River which in turn were associated with a subsequent decline in maximum 24-hour body temperatures. By linking body temperature to a behavioural state of movement, I am the first to demonstrate a direct link between access to a water resource and maximum body temperature in a free-living antelope species. The behavioural flexibility exhibited by sable antelopes during the dry season failed to buffer reduced resource availability as fluctuations in body temperature indicated that sable antelopes experienced nutritional and water stress. My findings highlight the importance of incorporating physiological measurements into behavioural and ecological studies to inform management decisions and improve conservation efforts in the face of climate change.
Biophysical evaluation of the kinetics, thermodynamics, and structure-stability relationship of Wuchereria bancrofti glutathione transferase in comparison with human µ and π glutathione transferases
(University of the Witwatersrand, Johannesburg, 2024-06) Oyiogu, Blessing Oluebube; Achilonu, Ikechukwu Anthony
Lymphatic filariasis is an endemic disease caused mainly by the Wuchereria bancrofti parasite and has been classified as a major neglected tropical disease. The emergence of drug-resistant strains of W. bancrofti and the limited efficacy of the available drugs on adult worms threatens the eradication of the disease. W. bancrofti glutathione S-transferase (WbGST) is a homodimeric enzyme central to detoxifying electrophilic compounds in the parasite due to its lack of cytochrome P-450. Therefore, WbGST is a potential therapeutic target for lymphatic filariasis. Bromosulphophthalein (BSP) and epigallocatechin gallate (EGCG) were previously shown to inhibit glutathione S-transferase activity. In this study, the interaction of WbGST with BSP and EGCG in comparison with human glutathione S-transferase P1-1 (hGSTP1-1) and human glutathione S-transferase M1-1 (hGSTM1-1) isoforms was investigated. Soluble WbGST, hGSTP1-1 and hGSTM1-1 were recombinantly produced and purified successfully to homogeneity. Glutathione and 1-chloro-2,4-dinitrobenzene conjugation assay was employed to analyse the enzyme activity, kinetics and inhibitory potency of the compounds. Spectroscopic studies were employed to investigate the functional and structural impact of ligand binding to the enzymes. Both thermal and chemical stability studies were performed, and binding energetics were analysed using isothermal titration calorimetry. The activity of WbGST was predominantly inhibited, with IC50 values of 5 μM for BSP and 12 μM for EGCG. The EGCG displayed uncompetitive and mixed modes of inhibition towards WbGST with respect to glutathione and hydrophobic binding sites, respectively. Whereas BSP showed a mixed type of inhibition for both active sites of WbGST. Ligands reduced the turnover rates (kcat) and the catalytic efficiencies (kcat/KM) of the enzymes. Upon ligand binding, 8-anilino-1-napthalene sulphonate was displaced from WbGST and hGSTM1-1 by 67%(BSP), 24%(EGCG) and 72%(BSP), 5%(EGCG), respectively; suggesting that the ligands bind to the 8-anilino-1-napthalene sulphonate binding site. Stability studies indicate that WbGST is the least stable of the three enzymes and that glutathione increases its stability. Isothermal titration calorimetry showed that BSP binds to multiple sites in WbGST with binding at site-1 (S1) and site-2 (S2), which are entropically and enthalpically driven, respectively. S1 showed a higher affinity for BSP than S2. EGCG binding to WbGST was entropically driven. BSP had a higher affinity for the enzymes than EGCG. All the results indicated that the ligands significantly impact WbGST more than the human GSTs. Further investigations, such as crystallography and molecular dynamics simulations, will shed more light on the ligan-protein interactions on a molecular level. Overall, this study suggests that BSP and EGCG are efficient inhibitors of WbGST that probably bind to both L and H-sites of WbGST, altering catalytic activity of the enzyme. The unique properties of the L-site are particularly suitable for rational drug design. Therefore, both ligands can be repurposed as new-generation therapeutics against filariasis.
Associations between sleep parameters, non-communicable diseases, HIV status and medications in older, rural South Africans
(Nature Research, 2018-11) Gómez-Olivé, F. Xavier; Rohr, Julia K.; Roden, Laura C.; Rae, Dale E.; von Schantz, Malcolm
As part of the Health and Aging in Africa: A Longitudinal Study of an INDEPTH Community in South Africa (HAALSI), we investigated sleep habits and their interactions with HIV or non-communicable diseases (NCDs) in 5059 participants (median age: 61, interquartile range: 52—71, 54% females). Selfreported sleep duration was 8.2±1.6h, and bed and rise times were 20:48±1:15 and 05:31±1:05 respectively. Ratings of insufcient sleep were associated with older age, lack of formal education, unemployment, and obesity (p<0.05). Ratings of restless sleep were associated with being older, female, having more education, being unemployed, and single. Hypertension was associated with shorter self-reported sleep duration, poor sleep quality, restless sleep, and periods of stopping breathing during the night (p<0.05). HIV positive individuals not on antiretroviral treatment (ART) reported more nocturnal awakenings than those on ART (p=0.029) and HIV negative individuals (p=0.024), suggesting a negative net efect of untreated infection, but not of ART, on sleep quality. In this cohort, shorter, poor-quality sleep was associated with hypertension, but average self-reported sleep duration was longer than reported in other regions globally. It remains to be determined whether this is particular to this cohort, South Africa in general, or low- to middle-income countries undergoing transition.
Accessory REE mineralization of the Nokeng fluorite deposit as distal facies of the adjacent Vergenoeg pipe, Bushveld Complex, South Africa
(University of the Witwatersrand, Johannesburg, 2024-10) Makhema, Relebohile Edward; Yudovskaya, Marina; Madlakana, Nonkuselo
The Nokeng Plattekop deposit forms part of the Paleoproterozoic Bushveld Complex and it is located near Rust de Winter, approximately 80 km northeast of Pretoria. This deposit belongs to the Vergenoeg Igneous Complex, which is associated with a violent gas-vapour-rich rhyolitic eruption. The complex comprises the Vergenoeg discordant breccia pipe and a pyroclastic rock suite. Within the breccia pipe and associated pyroclastic rocks, rare earth element (REE) mineralization is observed in minerals like allanite, apatite, bastnasite, monazite, and xenotime. The Plattekop fluorite deposit, which lies 1000 m south of the breccia pipe, is postulated to represent spill-over remnants of the Vergenoeg volcanic edifice. This study performed a comprehensive petrographic and geochemical analysis of ore and pyroclastic breccia of the Nokeng Plattekop deposit, utilizing various analytical techniques, including optical microscopy, XRF, ICP-MS, and SEM. The aim is to characterise the style of accessory REE mineralization at Nokeng as a provisional distal facies of the Vergenoeg volcanic field. The findings of this study suggest that the Nokeng Plattekop deposit comprises a hematite-fluorite unit overlying an ignimbrite unit. Hematite-fluorite ores of the upper unit resemble the Vergenoeg ore, exhibiting elevated CaO concentrations and reduced SiO2 content attributed to high fluorite and hematite proportions. Conversely, the ignimbrite unit displays reduced CaO and elevated SiO2 concentrations, corresponding to lower fluorite content and higher rhyolitic lava fragments. The basal ignimbrite is proposed to have formed during the early stages of rhyolitic volcanism, while Nokeng and Vergenoeg ores formed during later stages dominated by Ca- and F-rich ferruginous magma. Petrographic evidence suggests hematite pseudomorphs after magnetite, indicating mineral assemblage evolution. REE mineralization in the Plattekop fluorite deposit is represented by bastnasite, monazite and xenotime, mostly associated with quartz, goethite, aegirine, hematite and fluorite. The highest REE + Y content (~ 5 890 ppm) is associated with Plattekop hematite-fluorite ores. Comparative analysis of REE distribution patterns suggests similar styles of mineralization between Vergenoeg and Nokeng, indicating both deposits as potential sources of REEs as by-product.